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The total radiant exitance of a black body at the temperature of the triple point of
water, T;, (273.16 K), and at a series of other temperatures in the range from about
233 K (—40°C) to 373K (100 °C), has been measured by using a cryogenic
radiometer. From the measurements at 7, a value for the Stefan—Boltzmann constant
o has been calculated:

o= (5.66967+0.00076) x 1078 Wm™2 K™,

This is the first radiometric determination of ¢ having an uncertainty comparable
with that calculated directly from fundamental physical constants. This measured
value differs from the calculated one by 13 parts in 10%, which is less than the
combined standard deviations of the measured and calculated values.

From the measurements of exitance at the other temperatures, values of the
corresponding thermodynamic temperature 7 have been calculated by using Stefan’s
fourth-power law. Since the temperature of the radiating black body was also
measured by platinum resistance thermometers calibrated on IPTS-68, values of
(T—T,,) were obtained. These range from about —(5+1.6) mK at 20 °C to
—(28+2.5) mK at 100 °C and + (5+1.5) mK at —40 °C. The results confirm to
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within a few millikelvins the departure of Ty, from T above 0 °C already discovered
by gas thermometry and show that similar departures, but of opposite sign, exist down
to the lowest temperature measured, —40 °C. The uncertainties associated with these
new values of T and (7 — Tgg) are similar to those of the best gas thermometry.

1. INTRODUCTION
(a) Aims of the work

This is an account of work done at the National Physical Laboratory between 1972 and 1983
on the measurement, by using a cryogenic radiometer, of the total radiative power of a black
body at temperatures between —40 °C and + 100 °C. The first aim of the work was to
determine the Stefan—Boltzmann constant, o, with an uncertainty of about 1 part in 10%. The
second aim was to make radiometric measurements of thermodynamic temperature, 7, in the
range 233 K (—40 °C) to about 373 K (100 °C), with an uncertainty of about 1 mK.

The total radiant exitance M(T) of a black body at a temperature 7 is given by

M(T) = 2n%*T*/15k32, (1)
which is usually written M(T)=0cT", (2)

where o is known as the Stefan-Boltzmann constant.

The present recommended value for o is that calculated from the fundamental physical
constants appearing in (1), namely:

the speed of light, ¢ = 299792458 m s~ exactly, which stems from the 1983 definition of the
metre;

the Planck constant, £ = 6.626078 x 107®* J s, which has an uncertainty of 1 part in 10°;

the Boltzmann constant, £ = 1.380653 x 10723 J K™, which has an uncertainty of 8.5 parts
in 10% and which is given by the ratio of the gas constant R to the Avogadro constant N,,
where R =8.31448 J K™!mol™! with an wuncertainty of 8.4 parts in 10*® and
N, = 6.022136 x 10% mol™! with an uncertainty of 1.5 parts in 108.

The values and uncertainties of the constants 4, R and N, are taken from the 1985 Least
Squares Adjustment of the Fundamental Constants (Taylor & Cohen 1985) and lead to the
following value for the Stefan-Boltzmann constant:

o=>567042x10* Wm 2 K™* (3)

with an uncertainty of 34 parts in 10®. This uncertainty is given, as are all uncertainties in this
paper, at the level of one standard deviation (see also §1 (¢)). The main contributions to the
uncertainty in ¢ come from that in R and, to a lesser extent, in N,. The value for R
recommended in Taylor & Cohen (1983) is that of Colclough et al. (1979), obtained from
measurements of the speed of sound in argon at the temperature of the triple point of water.
The uncertainty in this determination of R is about one third of that of the previous value,
which was based upon measurements of the density of oxygen. There has, therefore, been a
substantial reduction in the uncertainty in the value of o, from 120 to 34 parts in 10%, due
to this new acoustic determination of R.

A radiometric determination of ¢ having an uncertainty of 100 parts in 108, or 0.01 9, is
equivalent to a determination of the Boltzmann constant, £, to 25 parts in 10%. Such an
uncertainty is comparable with that obtained by calculating £ with the best values of R and

6-2
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N,. A radiometric determination of £ to 25 parts in 10® would, however, provide the first
accurate direct value of £ not dependent upon the properties of gases.

A direct radiometric determination of ¢ requires a measurement of the total exitance of a
black body at a known thermodynamic temperature. For such a measurement to be
independent, the black body can only be at the temperature of the triple point of water, whose
thermodynamic value is defined as 273.16 K exactly.

In measuring the total exitance of a black body at the triple point of water, M(Ty,), it is
necessary for purely practical reasons to make the measurements over a small solid angle rather
than over a complete hemisphere (2r sr). The geometrical throughput, g, of the system must,

therefore, also be measured ,
M(Ty) = M'(T,,) /g = o T4, (4)

where M’(T;,) is the measured quantity. The design of the system permitting an accurate
measurement of g, and the details of the measurement procedure itself, provide two of the main
topics of this paper.

The second, but by no means subsidiary, aim of the work was to measure thermodynamic
temperatures in a range whose lower limit would be set by the decreasing amount of radiant
energy available, below 0 °C, and whose upper limit would be the temperature, of about 230 °C,
at which the black coating on the black body begins to decompose. In fact, it was found that
accurate measurements could be made between about —40 and + 100 °C, the upper limit being
set by practical reasons related to the rate at which the liquid helium used boiled off from
the cryostat. From (4) we can write, provided that g is independent of temperature,

M(T) _ M'(T) _(T)4

M(Ty,)  M(T,) \T,

(5)

Thus values of 7" may be determined from measurements of ratios of M’(T)/ M ’(ip).

It will be shown later that there are a number of small temperature-dependent corrections
in (4) and (5), which must be evaluated for the determination of both ¢ and 7. From (5) we
find that to determine 7" with an accuracy of 1 mK, it is necessary to measure the ratio
M’(T)/M'(T;,) with an accuracy of 1 part in 10° for 7= 373 K and 1.7 parts in 10° for
T = 233 K. The design and practical realization of a black-body radiator and a detector that
are adequate for such measurements form the other main topics of this paper.

All present values of thermodynamic temperature between ca. 20 K (the boiling point of
hydrogen (with reference to a pressure of 101325 Pa, which applies to all boiling points quoted
in this paper)) and ca. 1337 K (the freezing point of gold) are based upon the results of gas
thermometry, largely obtained over the past twenty years. A detailed history of the development
of modern thermometry is given in Quinn (1983) but, briefly, the reason why further,
independent measurements of 7 are required is the following. Until 1960, when the kelvin was
re-defined as 1/273.16 of the temperature of the triple point of water, all measurements of
temperature were based upon the so-called ‘fundamental interval’ of 100 °C between the
freezing and boiling points of water. Interpolation within and extrapolation outside this
fundamental interval were made by using gas thermometers calibrated at 0 and 100 °C. Gas
thermometers, however, are cumbersome instruments that are difficult to use at high accuracy
and, in general, are less reproducible than the best resistance thermometers. This was well
appreciated by Callendar (1899) who wrote: ‘It is impossible for those who have never worked
with a gas thermometer to realize the extent of its short-comings!’ In 1927, to meet the growing
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needs of science and international trade, the 7th Conférence Générale des Poids et Mesures
(CGPM) adopted the International Temperature Scale of 1927 (I'TS-27). This was drawn up
to allow science and industry to use a common practical temperature scale based upon a set
of fixed points whose temperature had been determined by gas thermometry and by using
the platinum resistance thermometer (—190 to 660 °C), platinum/rhodium thermocouple
(660 to 1063 °C) and optical pyrometer (above 1063 °C) as interpolating instruments. The
ITS-27 was succeeded by the International Practical Temperature Scale of 1948. This was
modified at the time of the re-definition of the kelvin in 1960 and replaced by the International
Practical Temperature Scale of 1968 (IPTS-68), which in turn has been slightly modified in
its 1975 Edition. In all of these practical scales, the principles of the ITS-27 have been
maintained, namely, that the scale is based upon a set of fixed points of temperature, whose
numerical values are chosen to be as close to thermodynamic temperatures as possible at the
time the scale is defined, and specified interpolating instruments and methods chosen to give
International Practical Temperatures, Tg,; which are as close as possible to thermodynamic
temperatures.

The IPTS-68 was the first International Practical Temperature Scale to be based upon the
1960 definition of the kelvin and was not, therefore, based upon the fundamental interval of
100 °C between the ice and the steam points. One of the consequences of the new definition
of the kelvin was that the steam point ceased to have an exact, defined, thermodynamic value
of 100 °C, and instead its temperature became subject to experimental determination.
Nevertheless, in IPTS-68 the boiling point of water was taken to be exactly 100 °C because
at the time the scale was drawn up, the most recent gas thermometry (Preston Thomas & Kirby
1968) had given a value of (100.000+0.005) °C. However, in 1976 the first results of new gas
thermometry at the National Bureau of Standards (NBS), Washington, by Guildner & Edsinger
(1976) appeared, which showed substantial differences between 7Tg, and T in the range of
Celsius temperature from 0 to 460 °C. The difference amounted to 25 mK at 100 °C and 80 mK
at 460 °C. These differences were about five times the uncertainties that had been assigned
to the fixed points of the IP'T'S-68 in this range and implied serious, unsuspected, errors in earlier
gas thermometry. Indeed, Guildner & Edsinger showed quite clearly that significant errors in
gas thermometry were inevitable unless (as had not been done in the past) very specific steps
were taken to overcome the effects of sorption of condensable gases at the walls of the gas bulb.
The implication of these differences is that the gas thermometry of the 1930s was wrong in giving
a value of —273.15 °C for the absolute zero of temperature. The correct value, consistent with
a fundamental interval of exactly 100 °C, would have been —273.22 °C and this would have
led to the adoption of 273.23 K rather than 273.16 K for the thermodynamic temperature of
the triple point of water.

The differences between T and T, discovered by Guildner & Edsinger (1976) are such as
would require significant changesin numerical values of the International Practical Temperature
in the next version of the IPTS, now in preparation. Not the least of these changes would, of
course, be that the normal boiling point of water would no longer have a temperature of 100 °C
but one closer to 99.97 °C. All of this calls for an independent verification of the results of the
new gas thermometry by a method that is not subject to the same sources of error. Hence the
need for the present work, one of whose aims is to measure 7 up to at least 100 °C with an
uncertainty equal to that of the gas thermometry of Guildner & Edsinger, namely a few
millikelvins.
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(b) Outline of the method

A cut-away drawing of the system is shown in figure 1. The principle of operation is as follows:
the black-body radiator at a temperature 7" between about 233 K (—40 °C) and 373 K
(100 °C) irradiates an aperture system at liquid-helium temperatures, which allows a beam
of thermal radiation to enter a second black body held initially at a temperature of 2 K. The
absorbing black body, which we call the calorimeter, is arranged so that it acts as a heat-flow
calorimeter. The radiant power absorbed in the calorimeter leads to a rise in its temperature
until the radiant power absorbed is balanced by the heat flow along a poorly conducting heat
link to a heat sink maintained at a very stable temperature near 2 K. The temperature rise
of the calorimeter, about 3 K for a radiating black-body temperature of 273 K, is monitored
by a germanium resistance thermometer attached to the calorimeter. When equilibrium has
been reached a shutter at liquid-helium temperature is closed, cutting off radiation from the
radiator. At the same time, sufficient electrical power is supplied to a heater on the calorimeter
to maintain its temperature. Provided that a number of conditions are met, this electrical power
is a very precise measure of the thermal radiative power. In particular, it is necessary to take
special precautions to avoid the effects of diffraction and scattering, the whole apparatus must
be at a pressure below about 1 pPa (ca. 8 x 107 Torr) to avoid significant energy transfer by
gas molecules and the emissivity of the radiator and absorptivity of the calorimeter must be
known.

The main body of measurements was made by using an aperture geometry that allowed about
1.3 mW of radiant power to enter the calorimeter for a radiator temperature of 273 K. The
sensitivity and stability of the overall system was such that the relative standard deviation of
a single measurement of radiant power was about 1 part in 10%, i.e. between 7 nW and 45 nW
for radiator temperatures between 233 and 373 K. As a check on various sources of uncertainty,
a subsidiary set of measurements was made by using a smaller pair of apertures. These allowed
only about 200 pW of power to enter the calorimeter with a radiator temperature of 273 K.

For the determination of the Stefan—Boltzmann constant, the radiator was set at a series of
temperatures within the range 271-275 K and the radiant power M’ (T') was measured at each
temperature. Since in this range T, does not differ significantly from 7, the temperature 7"
was established from the readings of eight capsule-type platinum resistance thermometers,
calibrated on IPTS-68, attached to the radiator. From each measured value of M’(T') a value
of M’(T,) was calculated and used, with the measured value of g, to obtain a value for ¢.

For the measurement of thermodynamic temperatures, a similar measurement procedure was
followed except that it was necessary to determine the ratio M"(7T") /M’ (T,). With the radiator
set to a nominal temperature 7gg, a series of ten values of M’(T) and the corresponding values
of Ty, were first obtained. The radiator was then cooled to close to 273.16 K for a series of
ten values of M’(T,). The average of these values of M’(T;,) with each individual value of
M’(T) was used to calculate a value for 7" and by comparison with the corresponding value
of Tg,, the difference T— Tgy was found. This procedure was repeated at fifteen different
temperatures within the range —40 to + 100 °C.

(¢) Previous thermal-radiation measurements of o and T

We were strongly influenced in the design of the equipment by two important pieces of work,
each in its own way a landmark in metrology. The first was the work of Ginnings & Reilly



RADIOMETRIC MEASUREMENTS OF ¢ AND T 91

top plate supported on
anti-vibration mountings

germanium resistance
thermometer

calorimeter (5 K)

upper aperture (6 K)

I~

pumping port to

turbomolecular pump

port for shutter-
operating mechanism

radiator heater /

ion gauge
(pressure <4 x 1077 Pa)

\Vau

40 cm

liquid-nitrogen reservoir
(77K)

liquid-helium reservoir
(4.2K)

stainless-steel
heat link

calorimeter heater

liquid “He reservoir
(4.2K)

VNN N

superfluid helium
reservoir at 2 K

— radiation trap (6 K)
| loweraperture (6 K)

% shutter (10 K)

\ supports linking radiator

and shield to 77 K reservoir

\ platinum resistance

thermometer (one of
eight on black body)

[T black-body radiator
(T=273.16 K)

Y

Figure 1. Gut-away drawing of the apparatus. The temperatures indicated are typical of those found when the
radiator is at a temperature near 273 K.
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(1972) who, in thelate 1960s, built a cryogenicradiometer at the NBS by using a low-temperature
black body as a heat-flow calorimeter in an attempt to measure the thermodynamic
temperature of the boiling point of water. Although not succeeding in this aim — largely for
reasons related to diffraction and scattering effects — they demonstrated the potential of
cryogenic radiometry. Although our design differs in many important respects from theirs,
notably in the measures taken to reduce diffraction and scattering, the use of superconducting
heater leads, and in the fact that the linear dimensions of the critical components are some
five times larger than theirs, the general principle of operation is the same.

The second piece of work that influenced our design was that of Blevin & Brown (1971) who
used a room-temperature radiometer and a radiator at the freezing point of gold to determine
the Stefan—Boltzmann constant. Not only did they make the first direct measurement to give
a value within about 0.1 9%, of the calculated value, but in so doing they unequivocally showed
how diffraction can lead to errors of the order of 19, and how, in principle, such errors can
be avoided (Blevin 1970). Our design in this respect is based upon their work.

There were four main souces of uncertainty in the result of Blevin & Brown (1971) evaluated
by them at the 999, confidence level, each one of which had a magnitude of about +0.06 %,.
The major sources of uncertainty were related to the radiator, a black-body cavity held close
to the temperature of freezing gold (Tys = 1337.58 K). The uncertainty in the thermodynamic
temperature, taken to be +0.2 K, led to an uncertainty in o of £0.069; the difficulty in
measuring the temperature by means of Pt-109Rh/Pt (all alloy percentages are quoted by
mass) thermocouples led to another +0.06 9, and various other source-dependent uncertainties
amounted to a further +0.05%,. The other principal sources of uncertainty were diffraction
(£0.06%,) and non-uniformity of response over the detector (+£0.05%). The overall
uncertainty was +0.139%,. Their value differed from that calculated from fundamental
constants by 0.19,. This difference could be explained by the IPTS-68 value of the gold point
being too high by about 0.3 K. Such a conclusion would tend to be supported by recent spectral
radiation thermometry in the range 460 °C to the gold point (Coates & Andrews 1982; Jung
1984).

Before the result of Blevin & Brown (1971) there had been many experimental determinations
of o, all of which had resulted in values significantly above that calculated from fundamental
constants. The closest was that of Kendall (1968), which was 0.49, higher and had an
uncertainty of + 0.4 %,. Before that, the average difference was 1.5 %,. Blevin & Brown reviewed
all of these measurements and concluded that this previously puzzling systematic difference
between the calculated and measured value for o could be explained by radiometric errors alone
and had no more fundamental significance.

(d) Diffraction, scattering and the overall size of the system

The problem of diffraction and its solution, in principle, as suggested by Blevin & Brown
(1971) is illustrated in figure 2. In figure 24, R is a point source of radiation, A, is an aperture
in a thin screen and C is a detector whose diameter just equals that of the geometrical beam.
As a result of diffraction at the edges of A}, the radiant flux reaching C will be less than that
calculated according to geometrical optics. To account for all of the radiant flux passing
through A,, the detector C would have to be of infinite diameter. Alternatively, as illustrated
in figure 24, the detector could be concave and arranged so that it subtended a solid angle
of 2nsr at A,. If the direction of rays is now reversed, so that C becomes an extended source
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Ficure 2. Sketch illustrating the argument concerning diffraction losses in an optical system (see text).

of radiation, in figure 24 the irradiance at R is less than it would be according to geometrical
optics by the same factor as was the radiant flux intercepted by C under the previous conditions.
For the irradiance at R to be that predicted by geometrical optics, the source C must subtend
a solid angle of 2msr at A,, as in figure 2.

Figure 2¢ illustrates an ideal diffraction-free system for the determination of o. A radiator
R subtends 27 sr at an aperture A, and a detector C subtends a solid angle of 2w sr at a second
aperture A,. R is a black body at a temperature of 273.16 K; A, A,, and the space between
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them are at temperatures close to absolute zero and the detector C is a black body also at low
temperatures. Because it is not possible in practice to have a radiator at 273 K in the immediate
proximity of an aperture in a thin screen at liquid-helium temperatures, the arrangement of
figure 24 is used. Between the radiator and the aperture A, a mirror system is placed. Part
of this mirror system is formed by the conical entrance to the aperture M, and henceisat 4.2 K,
and the remainder M, is attached to the radiator and is at the same temperature as the radiator.
Provided that the mirror surfaces are perfect reflectors, the radiant flux leaving A, in the
direction of A, will be identical to that in the ideal system of figure 2¢. Similarly, a mirror surface
M,, which is the conical exit of aperture A,, ensures that all of the radiation passing through
A, reaches the detector C. Diffraction losses occur only to the extent that M,, M, and M, are
not perfect mirrors and, as we shall see, these losses can be calculated with a sufficient accuracy.

Scattering, that is to say radiant flux passing through A, that is not in the direct beam from
A,, occurs if the space between A, and A, does not behave as a black-body absorber of radiant
flux coming from A,. This also can be calculated and a small correction made. The inner
surfaces of A, and A, must be non-reflecting as well as being close to absolute zero in
temperature.

The two factors that were decisive in fixing the overall dimensions of the system have not
yet been mentioned. These were: first, the wide spectral range of the thermal radiation emitted
by a black body at 273 K, and second the need to measure the cross-sectional area and distance
between the apertures to better than 1 part in 10%. Less than 0.01 9, of the total radiant power
is outside the wavelength range 3-400 pm, but 0.6, is in the range beyond 100 pm. It is
essential that all the dimensions of the radiating and absorbing black bodies and also those of
the apertures be very large compared with the wavelengths of the radiation in question. This
calls for aperture diameters to be of the order of centimetres rather than millimetres. In
consequence, to obtain good black-body conditions with apertures of this size, the principal
dimension of the radiating and absorbing black bodies must be of the order of a metre (in fact
about half a metre was found to be sufficient). To be able to measure the diameters of the
apertures and the distance between them with an accuracy sufficient to calculate the
throughput g to 1 part in 10%, we considered that a minimum aperture diameter of 1 cm was
necessary. We finally chose 1.8 and 2.6 cm for the diameters of the principal pair of apertures
and 1.0 and 1.8 cm for the subsidiary pair as being diameters suitable for measurement. The
distance between the apertures, 10 cm, was chosen to allow sufficient radiation to pass into the
calorimeter, while at the same time keeping the solid angle of the beam small enough to allow
an efficient design of radiator and calorimeter. The dimensions of the rest of the apparatus,
the capacities of the liquid-nitrogen and liquid-helium reservoirs and the design of the pumping
system were all set by these initial decisions on the sizes of the apertures.

(¢) The evaluation of uncertainties

The question of uncertainties is central to the whole of this paper. The results of metrological
work such as this have little value unless accompanied by a proper evaluation of the associated
uncertainties. A final overall uncertainty should be given, but sufficient information is also
required on the origin of each of the contributing uncertainties to allow the reader, and in due
course those whose task it is to evaluate the results of metrological work, to make their own
evaluation of the overall uncertainty if needed.

In estimating and combining our uncertainties, we have followed the principles endorsed
by the Comité International des Poids et Mesures following the recommendations, in 1980,
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of a Working Group made up of the representatives of national standards laboratories and
international organizations (Giacomo 1981; BIPM Rapport no. 80/3 1980). Briefly, uncer-
tainties are considered under two headings: type A uncertainties, evaluated by applying statis-
tical methods to the results of a series of repeated observations and type B uncertainties,
evaluated by other means. Type A uncertainties are calculated at the level of one standard
deviation and an attempt is made to estimate type B uncertainties also at the same level (of one
standard deviation). To obtain an overall uncertainty, all of the type A and type B uncer-
tainties may be combined in quadrature, but with due account being taken of correlations
between individual uncertainties.

In this introductory section we have outlined some of the more important considerations that
influenced us in the design of the experiment. In the sections that follow, each of the principal
components is dealt with in more detail and the associated uncertainties evaluated. We discuss
first the black-body radiator and black-body calorimeter — the detector — and the evaluation
of the thermal-radiation transfer function, which takes into account the emissivity of the
radiator, absorptivity of the calorimeter and the vignetting effects of the apertures. We then
describe the apertures, their construction and measurement, the effects of finite edge thickness
and the calculation of g. This leads on to the problem of the radiation trap, i.e. the space between
the apertures, which must absorb almost completely the superfluous thermal radiation, about
989, of that passing through the lower aperture. This is followed by the calculation of the
residual losses, due to diffraction, from imperfect reflection at the mirror surfaces. We then
describe the whole electrical measurement and control system, the vacuum system and the
general mechanical and cryogenic arrangements. Finally, we come to the results, the
summation of uncertainties and a discussion of the implications of the results, particularly when
compared with those from other work.

2. THE BLACK-BODY RADIATOR
(a) Fundamental considerations

The black body was designed to provide a beam of thermal radiation having a well
characterized spectral distribution that would pass through the pair of apertures and be
absorbed by the black-body calorimeter. To achieve our aims, the effective temperature of the
black body must be known to within about 1 mK, this in the presence of temperature gradients,
which can amount to as much as 20 mK over the length of the black body, and variations in
the apparent emissivity over the internal walls of the radiator due to the presence of the aperture.
This very strict temperature requirement posed a number of problems. While some of these
were of a practical nature, others were more fundamental and concerned the limitations
inherent in the Planck and Stefan—Boltzmann formulas when applied to real situations. These
will be dealt with first.

The total radiation energy U inside a closed cavity of volume V whose walls are at a given
temperature 7 is generally considered to be given by the Stefan-Boltzmann formula

U = 8nbk*VT*/15c3h3. (6)
This results from the integration over all frequencies of the Planck formula

8nkVT? f ® %3

he

U= pg| dx, (7)
where x = i /kT.
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It has always been recognized that there is a difficulty in the practical application of the
Planck and Stefan-Boltzmann formulas stemming from the assumption that all wavelengths
of the radiation are infinitesimal compared with the dimensions of the cavity. In a closed cavity
whose walls are at a high temperature such that an overwhelming proportion of the radiant
energy is at wavelengths that are, indeed, infinitesimal compared with the dimensions, no
particular problem arises. At very low temperatures, on the other hand, where the spectral
radiant energy is far from negligible at wavelengths of a few millimetres, the predictions of the
Stefan—Boltzmann formula for a cavity whose dimensions are of the order of a few centimetres,
for example, are unlikely to be correct at the level of 1 part in 10°. The question for this work
was, therefore, the following: how large must a cavity at 233 K be for the Stefan—Boltzmann
formula to represent correctly the total radiant energy density to better than 1 part in 105?
A subsidiary question was how large must the aperture be for the energy passing through to
differ by less than 1 part in 10° from that incident on the aperture? This second question is
quite different from that concerned with the effect of size of aperture on the emissivity of the
cavity, which is a purely geometrical one.

The condition that all wavelengths must be small compared with the dimensions of the cavity
is only one of a number of restrictions on the Planck and Stefan-Boltzmann formulas, but for
this work it is the most important one. Others are related to the shape of the cavity, the radii
of curvature of edges, the effects within a few wavelengths’ distance from the walls and the
losses at the walls themselves. It was shown by Weyl (1913) that the restrictions on shape,
namely that the cavity must be a rectangular parallelepiped, cease to apply in the limit of high
frequencies. Only in the last fifteen years, however, have detailed calculations been made of
the eigenfrequency distribution for finite cavities of particular shapes such as cubes, spheres,
hemispheres, cones and cylinders.

The renewed theoretical interest in this area stems from the link between the problem of
black-body radiation in finite cavities and similar problems, concerned, for example, with
coherent and partially coherent radiation, the density of states and quantum-size effects in the
statistical mechanics of finite non-interacting systems, and thermal radiation transfer between
closely spaced surfaces at very low temperatures. A general review of these subjects can be found
in the monograph by Baltes & Hilf (1976) and, for the particular problem of black-body
radiation in finite cavities, in Baltes (1973, 1976) and Case & Chiu (1970).

In the limit of high temperatures and large volumes, for which the product TV tends to
infinity, the total radiation is accurately described by the Stefan-Boltzmann formula. At very
low temperatures or in small cavities such that TV & 1 cm K, the Stefan-Boltzmann formula
is in error by more than 5 %,. In this region the total energy must be found by detailed numerical
evaluation of the sum of the eigenfrequencies appropriate to the particular shape of cavity in
question. In the intermediate domain, for which 7V# is large compared with 1 cm K, but does
not tend to infinity, the small deviations from the Stefan—Boltzmann formula have been
calculated for the most common shapes of cavity. For the simple cylindrical cavity of radius
r and length L, measured in centimetres, Baltes (1973) has given
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With the radiator and calorimeter dimensions used in the present work, the correction term
for T = 233 K does not exceed the equivalent of 0.01 mK and is therefore quite negligible.
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However, this relation is for a simple right circular cylinder and we have employed a more
complex shape, as may be seen from figure 1. In particular, near the junction between the
conical end of the radiator and the cylindrical wall, there is a region where the distance between
surfaces becomes very much smaller than elsewhere in the cavity. Calculations have been made
(Baltes 1972), however, for a small-angle prism, which indicate that even in this case departures
from the Stefan—Boltzmann predictions would arise at the level of a few parts in 10° only over
a few millimetres distance from the junction. The contribution of this region to the radiant flux
from the whole radiator is sufficiently small for errors to be negligible.

Although the corrections to the Stefan-Boltzmann formula for the radiator and the
calorimeter are negligible, this is not the case for the radiant power from the radiation trap,
which is characterized by a much lower temperature (see figure 1). For 4.2 K radiation the
Stefan—Boltzmann formula is in error by about 1 part in 10° for a cavity having the dimensions
of the radiation trap. Further, the calorimeter, considered as a simple cylinder, would depart
from a perfect absorber of 4.2 K radiation by nearly 1 part in 10%. Fortunately, the level of
thermal radiation from the radiation trap is sufficiently small for errors such as this to be
negligible as well.

In addition to the effects of finite cavity size on the radiation density in a closed black-body
cavity, the effect of the wavelength not being infinitesimal compared with the diameter of the
aperture must now be considered. The straightforward case is that in which a plane
electromagnetic wave is propagating normal to a plane conducting thin screen in which there
is a circular aperture. This has been solved for electromagnetic radiation whose wavelength is
large, or comparable with, the diameter of the aperture. The case in which the wavelength
is small but not negligible, and in which the radiation approaches the aperture at an angle
to the normal, is much more complex. This problem has received considerable attention since
the 1950s with the growth of microwave technology and has been reviewed by King & Wu
(1959) and more recently by James (1976).

For wavelengths much smaller than the radius, the effective cross-sectional area A4 of a
circular aperture of radius R for electromagnetic radiation of wavenumber £(= 2m/A) incident
normally is given to a good approximation, for values of kR > 1, by Keller (1957) as

A4 1 2
[ E | ——— —1
5 =1 R sin (2kR—1m). 9)

This is an oscillatory function about unity, of amplitude of order 1/(kR)3, except for 1 < kR < 2,
for which A4 tends to zero. For the aperture diameters used here, the convolution of the
correction term and the Planck function leads to net corrections in calculating 7 in the range
233-373 K of less than 1 part in 10® and is therefore negligible. For the 4.2 K radiation from
the radiation trap, the effect is much larger. Nevertheless, because the overall correction due
to radiation from this source is small, the net effect on the measured value of o is insignificant.

To sum up this introductory discussion on the black-body radiator, we conclude that, at the
level of 1 part in 105, the Stefan—Boltzmann formula should be adequate to describe the density
of thermal radiation inside the radiator. The same conclusion is reached in respect of the
absorptance of the calorimeter for this radiation. In addition, the diameters of the apertures
are sufficiently large for their cross-sectional areas to be given simply by nR?.
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(b) The black paint

We come now to the more usual questions concerning black-bodies, namely the emittance
of the walls and the effects of the presence of the aperture and of temperature gradients. The
first of these to be discussed is the emittance of the walls, since this is the principal factor that
influences the performance of the cavity. The inner walls of the radiator, radiation trap and
calorimeter are coated with 3M Nextel black paint (proprietory product available in two
grades (3M-C 401 and 3M-C 101) made by Minnesota Mining and Manufacturing Company,
Minneapolis, U.S.A.). Many of the optical properties of this black are now well known, as are
its thermal and outgassing behaviour. This paint was chosen because it has a high emittance
over a wide wavelength range, it can be treated to have a low residual outgassing rate at
temperatures up to and above 100 °C, it is straightforward to apply and is thermally stable
up to a temperature of 230 °C.

The dried 3M paint is made from a mixture of silica spheres (80 %, by mass) having a range
of diameters from 5 to 100 pm, carbon black (about 209, by mass) and a small amount of
binder. The structure of the paint may be seen in figure 21, which shows the edges of the
apertures viewed under a scanning electron microscope. The 3M-C 401 grade was used for
the radiator and the 3M-C 101 grade for the calorimeter, radiation trap and apertures.

The optical properties of 3M black are summarized in figures 3-6. Figure 3 shows the total
hemispherical emittance as a function of temperature (Hawks & Cottingham 1970; Westcott
1968). Figure 4 shows the normal spectral reflectance, both diffuse and specular, in the
wavelength range from 2 to 400 pm (Stierwalt 1966, 1979; Compton et al. 1974; Pompea
et al. 1983; Smith 1984); the peaks in the reflectance at about 9 and 20 pm are due to the well
known reststrahlen bands in silica (Heaney et al. 1983; Shitzer & Kleinman 1961). Figure 5
shows the reflectance at high angles of incidence at wavelengths in the visible region, at 28,
118 and 337 um (Hsia & Richmond 1976; Compton et al. 1974), and figure 6 shows the
reflectance as a function of angle of incidence for angles greater than 60°. Data from figures 3,
4 and 6 will be used later in calculating the radiating and absorbing properties of the radiator
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Ficure 3. The total hemispherical emittance of 3M Nextel paint: @, direct measurements by Hawks & Cottingham
(1970); O, direct measurement by Westcott (1968); A, calculated by using the reflectance data of figure 4
for paint temperatures of 77 K and below; and o, for paint temperature of 373 K.
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Ficure 4. The normal spectral reflectance of 3M black: , for a paint temperature between 4 K and 77 K, and
———, 373 K (Stierwalt 1966, 1979); O, diffuse and specular reflectance at room temperature (Compton e al.

1974); J(A, 273 K) is the Planck function for 273 K radiation.
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F1cure 5. The specular reflectance, pgp,, of 3M black at three angles of incidence: ®, @ and e from Hsia &
Richmond (1976); X, @ and o from Compton ¢t al. (1974).
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Ficure 6. The specular reflectance, pgp,, of 3M black as a function of angle of incidence for four wavelengths,
deduced from figure 5 and the data of Hsia & Richmond (1976).

and calorimeter. Figure 5, upon which figure 6 is based, shows that the measurements by Hsia
& Richmond (1976) of reflectance as a function of angle of incidence at visible wavelengths
are consistent with those of Compton et al. (1974) at 28, 118 and 337 pm. In figure 3, the total
hemispherical emittance measurement by Westcott (1968) is in good agreement with the two
values we have calculated from the data shown in figure 4.

Overall, these figures show that measurements made of the optical properties of 3M black
give a consistent picture of its behaviour. The measurements by Compton ¢t al. (1974) were
made on two different types of the 3M black: type 401, which has an epoxy resin binder, and
type 101, which has a hydrocarbon binder and which was available either in aerosol cans or
undiluted for pressure-fed spray guns. Little difference was observed between the optical
properties of the two versions, although there was some evidence that type 101 is a slightly
better diffuse reflector than type 401.

An important optical property, which has so far not been mentioned, is the retroreflectance
of 3M black. This is the fraction of the incident radiant flux that is reflected directly back along
the direction of incidence, over and above the fraction predicted by lambertian reflection and
irrespective of the orientation of the surface with respect to the incident flux. There have been
many hypotheses, reviewed by Trowbridge (1978), proposed to explain retroreflection but it
occurs on such a wide range of surfaces and surface shapes that no single mechanism provides
a satisfactory explanation. For 3M black we would expect retroreflection to occur to some extent
since this material is composed of spherical semitransparent particles embedded in a scattering
matrix. The measurements of Hsia & Richmond (1976), however, showed no evidence of
retroreflection at visible wavelengths. Measurements made by Zalewski (personal communi-
cation 1979) of the reflectance of a model of our calorimeter showed, however, a residual
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reflectance in the deeper regions that was a little higher than calculations based upon diffuse
reflectance predict. This we have interpreted as indicating a small amount of retroreflection,
below the level detectable by the method used by Hsia & Richmond. That the retroreflection
observed in 3M black is small at visible wavelengths is probably due to the presence of the
relatively thick coating of carbon black on the surface of the spherical particles. On this
hypothesis a somewhat larger retroreflection might be expected at very long wavelengths, since
the absorption of amorphous carbon black falls off approximately as A™! in the infrared (Koike
et al. 1980).

The calculation of the emittance of the radiator requires a value for the overall reflectance
of the paint p(7') for thermal radiation of a temperature 7. This is given by the relation

e A
p(T) =J p(A)J(A, T) d/\/J J(A, T)dA, (10)
A A

where p(A) is the spectral reflectance of the paint and J(A, T') is the Planck distribution for
thermal radiation of temperature 7.

By using the data presented in figure 4, p(7T) has been evaluated numerically from (10).
The results are given in table 1. Our estimate of the uncertainty in p(7'), made on the basis
of the overall consistency among the considerable number of independent measurements, is
+109, ofits value. The reflectance does not appear to change significantly between 4.2 and
77 K (Stierwalt 1979).

TABLE 1. VALUES OF NET REFLECTANCE

paint radiation net
temperature (kelvin)  temperature (kelvin)  reflectance, p(T)
373 273 0.064 +0.006
373 373 0.066 +0.006
4277 273 0.057+0.006
42177 373 0.057 +0.006

The contribution of the long-wavelength specular reflectance is very small since it only
becomes significant at wavelengths beyond about 80 pm, where less than 19, of the total energy
is to be found. It is easy to ensure that the designs of the radiator, calorimeter and radiation
trap are such as to reduce to insignificant levels the effects of long-wavelength specular
reflection. Specular reflection at short wavelengths, which becomes significant at higher angles
of incidence, cannot be ignored, however, and plays an important role in the emission of
radiation from the radiator.

(¢) Temperature control and temperature measurement

The radiator, which is shown in detail in figure 7, was designed so that adequate uniformity
of temperature could be obtained by controlling the temperature at just one location. Heat
losses other than those through the aperture were reduced to very low levels by radiation
screening, and the walls of the radiator were made of 5 mm thick copper to reduce gradients.
The mass of the radiator is 40 kg. Such a design, of course, results in a radiator having a long
thermal time constant. The radiator is suspended from the lower flange of the liquid nitrogen
reservoir by six stainless-steel wires. These serve both as mechanical supports and heat links
to the nitrogen reservoir. Temperature control is achieved by means of a ring heater located

7 Vol. 316. A



102 T.J.QUINN AND J.E. MARTIN

D
273K, 373 K _
T,=—156 mK, +8.8 mK ___
S
|
I
1
) I
T, = +3mK, +12.6 mK .’
|
4
7 Vi
| [—E
B ; |
A
T,=+08mK, +1.3mK ___________| q__ i [ ‘ %
Ts =+1.8mK, —0.1 mK ’ T~ —
1= BmK, -01lmk .4 __ 4 __| S L J f F
—\"‘!\
VG
T, = +0.1 mK, 0
T,=+1.9mK,
T,=—0.3 mK,
T, =40.6 mK, g
7
| 12cm o

Ficure 7. Details of the radiator, showing the positions of the eight platinum resistance thermometers measuring
temperatures 7, — Tg. Examples of measured temperatures are shown for 7' & 273 and 373 K. A, stainless-steel
supports attached to liquid-nitrogen reservoir; B, ring heaters; C, gold-plated cylindrical mirror (M, of
figure 2d); D, floating radiation shields; E, outer stainless-steel case; F, temperature-controlled shield;
G, pumping port; H, thermometer radiation screen; I, ion gauge; J, radiation shields.

just alongside the anchoring points of the stainless-steel wires. The radiator is shielded from
room-temperature radiation and from the cold upper parts of the system by two floating shields,
a temperature-controlled shield and two shields attached to the lower cylindrical part of the
radiator. The temperature-controlled shield is independently suspended by stainless-steel wires
from the 77 K reservoir and has its own ring heater for temperature control and two other
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heaters to maintain temperature uniformity. In addition to these rigid shields, which have
baffled pumping ports to improve the overall pumping rate of the system, the top of the radiator
is wrapped with aluminized mylar film. The upper part of the radiator is enlarged to provide
space, outside the direct beam, for the ion gauge.

The radiator was made in three principal parts: the cone, the cylindrical body, and the top,
as shown in figure 7. The individual parts were painted internally before assembly with the
3M black and the whole was baked at 200 °C for 10 h in a vacuum furnace. The parts were
bolted together with 5 mm copper bolts, which were tightened to a torque of 19 N m: to obtain
as good a thermal contact as possible between the various parts of the radiator. The gold-plated
cylindrical mirror bolted to the top of the radiator forms part of the mirror system designed
to reduce diffraction losses (M, of figure 24).

The effective temperature of the radiator is calculated by using measurements made with
eight platinum resistance thermometers bolted to the radiator. Specially designed capsule-type
thermometers were made for us by H. Tinsley & Co. Ltd. Each thermometer (see figure 8) has
a threaded silver block brazed to the platinum sheath during manufacture. In this way the
thermometer can be screwed directly into threaded holes in the radiator, which ensures good
metal-to-metal contact while allowing them to be easily removed for calibration. It was
necessary to enclose each thermometer in radiation screens, made from multilayers of
aluminized mylar film, to ensure that the thermometer temperature was that of the radiator,
and not affected by radiation of a slightly different temperature from an adjacent radiation
screen. At room temperatures and above, the thermal anchoring of the leads of a capsule-type
platinum resistance thermometer is very much less critical than at low temperatures.
Nevertheless, the leads of each thermometer were anchored to the controlled shield. The
thermometers were filled with dry air to a pressure of 50 kPa at room temperature.

standard capsule-type platinum
hole for tightening bar resistance thermometer

[
/

silver block brazed to platinum sheath
5 mm screw during manufacture
thread 8

1 cm

Ficure 8. The capsule-type platinum resistance thermometer, eight of which were made for us by H. Tinsley & Co.
for the measurement of the radiator temperature.

The thermometers were each calibrated on IPTS-68. A complete calibration, at the triple
point of water and at the steam and tin points was made in 1975 and again at the end of the
work in 1983 when a calibration at the boiling point of oxygen was also made. The values of
o and & deduced from these calibrations together with the consequent changes in Tz at 50 °C
are shown in table 2. During use the thermometers were, from time to time, unscrewed from
the radiator and measured in a triple-point-of-water cell brought to the cryostat. This was done
so that the values of R, and their drift with time, could be determined by using the proper

7-2
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leads of each thermometer running up through the cryostat to the resistance-measuring bridge.
The values of R, measured iz situ over the six year period from 1978 to 1984 are shown in
figure 9. In the critical period during which measurements of thermodynamic temperature were
being made from 1980 to 1983, the average change in R, was equivalent to 0.5 mK. The average
standard deviation of the measured values of R, for each thermometer about a straight line
was very much smaller, only 0.2 mK. The data of table 2, taken together with the almost linear
changes observed in R, and in the values of the reference resistors during the period of
measurement, have led us to conclude that the uncertainty in the 7, calibration of the
thermometers, taken as a group, is +0.3 mK.

TABLE 2. CALIBRATIONS OF PLATINUM RESISTANGE THERMOMETERS

thermometer®  year 102 a/°C™ ATy(0)®/mK 8/°C AT, (8)®/mK

223659 (T,) 1975 3.9266629} o7 {1.49749} 03
1983  3.9266085 ' 1.49624 f :
213868 (T;) 1975 3.9268918} Y {1.49672 } 03
1983  3.9268603 : 1.495685 :
221421 (T)) 1975 3.9264626) 05 !1.496526} tod
1983  3.9265027 : 1.496779 :
226234 (T,) 1975 3.9264966} od {1.496326 } o
1983  3.9265068 ' 1.495985 :
226232 (T,) 1975 3-926,4142} o4 {1.496349 tod
1983 3.9264482 : 1.496 68 :
226237 (T) 1975 3.9266096} od {1.496476: ot
1983  3.9266161 : 1.49617 :
226236 (T,) 1975  3.9263736 } 03 {1.49703} 02
1983  3.9263487 ' 1.49633 :
226233 (T,) 1975 3.9264552: 0.0 {1.49683} ot
1983  3.9264556 : 1.49659 :

® Theidentifying number of each thermometer is followed in parentheses by its numbered position in the radiator
(see figure 7).
® The change in temperature at 50 °C due to the change in « and & between 1975 and 1983.

The disposition of the platinum resistance thermometers is shown in figure 7. The
temperature differences indicated in the figure are typical of those observed for radiator
temperatures near 273 and 373 K. The. heating effect was measured periodically for each
thermometer and the appropriate correction made to reduce the readings to zero current. The
heating effect increased from an average, over all of the thermometers, of 4.8 mK at 0 °C to
5.4 mK at 100 °C. The resistance of the thermometer was measured with an a.c. bridge made
at NPL and operating at 425 Hz with a Wilkins-type reference resistance calibrated by the
NPL Electrical Science Division in November 1979 and 1980 and December 1982. The
temperature coefficient of the standard resistance was small but not negligible (1 part in 108
per kelvin) and the necessary correction was applied.

A knowledge of the temperature distribution and drift rate in the radiator is important in
three respects: first, we must be able to define an effective temperature for the radiation
reaching the calorimeter; second, the temperature of the upper parts of the radiator, not directly
visible from the calorimeter, must be sufficiently close to that of the lower parts not to affect
the radiation reaching the calorimeter; and third, the overall drift rate must be small enough
for accurate temperature measurements to be possible by using the platinum resistance
thermometers. By careful control of the heaters on the radiator and temperature-controlled
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Ficurke 9. The changes in temperature, AT, at 273 K equivalent to the changes in R, observed during the
course of the work for each of the eight platinum resistance thermometers attached to the radiator.

shield, it was possible to obtain drift rates during runs which were generally less than
0.3 mK min~! but which occasionally rose to 0.6 mK min~!. At these drift rates no correction
needs to be applied for the response time of the thermometers.

The principal heat loss from the lower parts of the radiator takes place through the aperture
into the cold radiation trap. The large thermal mass of the cone and its relatively poor thermal
contact with the rest of the radiator result in the temperature of the cone always lagging behind
that of the lower flange of the cylinder.

To calculate the effective temperature of the radiator it is necessary to know the temperature
distribution over all of those parts of the radiator visible from the calorimeter, namely the lower
cylindrical part and the cone. With such low drift rates, the temperature differences along the
cylinder, from one end to the other, and in the cone were small. Those along the cylinder were
in the range zero to about 28 mK, depending upon the temperature and sign and magnitude
of the drift rate. Those in the cone were very much smaller due to the much larger cross section
of the cone. The temperature of the cone was measured about halfway along its length and
calculations indicate that the effect of ignoring temperature gradients in the cone would lead
to errors not exceeding 0.3 mK in the worst case. It is not possible, however, to ignore the
temperature gradients in the cylinder. Although the simple assumption of a linear gradient
between the top and bottom of the cylinder is unlikely to lead to significant error, a better
estimate has been obtained by taking into account the probable heat flow in the cylinder. It
was observed that over the period of measurement, some two hours, both the temperature
distribution over the cylinder and cone and the drift rate of the whole assembly remained
practically constant. Under these conditions the heat flow down the cylinder is constant and
is equal to the sum of the heat loss by the radiator and that required to raise the temperature
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of the radiator assembly. In Appendix A we derive the following equation, which describes
this situation:

T(x,t) = T,(t) —3N(M ' —x71) =4J(M?—x*)—J(c+ L) (x— M), (11)

where ¢ = 36 cm, L = 60 cm and M = 23 cm, T,(¢) is the slowly drifting temperature of the
top of the cylindrical part of the radiator and 7(x,¢) is the slowly drifting temperature of an
element of the cylinder a distance x from the aperture. Also, from Appendix A,

J =psk~10T/ot (12)
and N=¢eHR}ocT*/x AH, (13)

in which p, s and « are respectively the density, heat capacity and thermal conductivity of
copper, H is the radius of the cylinder (6 cm), R, the effective radius of the lower aperture
derived in Appendix A, AH the wall thickness of the cylinder (0.5 cm) and ¢ the emittance
of the surface.

A good test of the validity of (11) can be made by calculating 7'(x, ) for x = 60, since this
is also a measured temperature 7y (see figure 7) and we assume that if (11) predicts the correct
value for x = 60 it will do so for other values of x along the cylindrical part of the radiator.
In addition, if the model upon which (11) is based is a good one, the differences between the
measured and calculated values of 7; should be small over the whole range of conditions
observed. Figure 10 shows that this is indeed the case. For temperature differences between
one end of the cylinder and the other from +8 to —28 mK and drift rates from +0.5 to
—0.4 mK min™" and at temperatures over the whole range of those encountered, the standard
deviation of the difference between measured and calculated values of Ty is, for the large
aperture pair, only 1.3 mK. We found that equally good agreement could be obtained for the
small-aperture pair after the calculated value of N had been increased by 6 %,, an adjustment
that we do not consider significant. The values of N and J adopted were as follows:

J=0.820T/0tscm™2
N =9.5x10"1"1 T* cm K73 for the large-aperture pair,
N =5.3x10711 T* cm K73 for the small-aperture pair.

The final values of 7'(x) for each value of x were obtained by first calculating 7T'(x = 60) and
hence deducing the difference between 7 (measured) and 7 (calculated) and then adding
this small difference proportionally to the calculated values of 7'(x).

It now remains only to examine the possibility of a significant gradient existing through the
paint before the discussion of the thermal behaviour of the radiator is brought to a close. The
room-temperature thermal conductivity of the dried paint given by the manufacturer is
0.29 W m™! K. This figure is consistent with that estimated from the work of Garrett &
Rosenberg (1974), who measured the thermal conductivity, from 2 to 300 K, of a wide range
of composite materials made up of an epoxy-resin binder with various volume concentrations
of spheres and powders of glass and quartz. At room temperature the conductivity depends
mostly upon the volume concentration of the spheres, whereas at liquid-helium temperature
Garrett & Rosenberg found a significant size effect. The smaller the diameter of the spheres,
particularly below 6 pm, the lower was the overall conductivity. From our electron microscope
photographs of the 3M paint we estimate a mean sphere diameter of between 10 and 20 um.
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Ficure 10. Temperature distributions along the cylindrical part of the radiator calculated by using (11). The
measured temperatures of the cone, the measured drift rate, the difference A7 between the measured and
calculated values of Ty and the identification of the run are given for each curve. Values ¢g = 71, run no. 5,
for example, indicate the fifth run in the series at 71 °C and fg = 71 (7},), run no. 4, the fourth run in the
corresponding series at 7}, (see table 19).

This suggests that the size effect is insignificant and we conclude, on the basis of Garrett &
Rosenberg’s results, that the conductivity at 4.2 K is about 0.05 W m™ K71, The heat flux
8¢ (x) through the paint from an element of the cylindrical wall a distance x from the aperture
is greatest at the top of the cylinder near the aperture and is given by (A 4) of Appendix A.
At temperatures near 373 K we find that 8@ (x) for such an element is equal to 1.2 W m™2.
For a paint thickness of 100 pm and a thermal conductivity of 0.29 W m™ K™ this leads to
a maximum temperature drop across the paint of only about 0.4 mK. This can be ignored since
this is a maximum value (for x = 23) and it varies as ¥~ along the length of the cylinder from
x = 23 cm to x = 60 cm.

In conclusion, we estimate the overall uncertainty in the measured values of T, in the
radiator to be +0.6 mK near 273 K rising to 1 mK at temperatures near 373 K. These values
result from combining in quadrature the uncertainties in the 74 calibrations of the thermometers
(£0.3 and + 0.5 mK at the extremes of the temperature range) and the uncertainties stemming

from the longitudinal and transverse temperature gradients in the radiator (+0.5 and
+0.9 mK).

drift rate ATy  identification
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3. THE CALORIMETER AND 2 K RESERVOIR
(a) Thermal behaviour of the whole assembly

Although the radiator and calorimeter must each approximate an ideal black body very
closely, their functions otherwise are quite different. As we have seen, the radiator must provide
thermal radiation over a solid angle of 27 sr at the lower aperture and the effective temperature
of this radiation must be known to within 1 mK. The calorimeter, on the other hand, acts as
a detector of this radiation. To do so it must subtend a solid angle of 27 sr at the upper aperture.
The calorimeter must absorb practically all of the radiation passing through the aperture and
it must have a means of measuring the thermal radiative power thus absorbed. The
measurement is made by the substitution of electrical power for the thermal radiative power
and by using the heat-flow calorimeter as a null detector. It must be demonstrated, therefore,
that the calorimeter responds in the same way to electrical and radiative heating. It is in doing
this that one sees the overwhelming advantages of a low-temperature detector.

Figure 11 shows a schematic outline of the calorimeter and 2 K reservoir assembly. The
individual components of which can be readily identified in the detailed drawing of figure 12.
The central requirement is that the temperature rise measured by the germanium resistance
thermometer at D must depend only upon the amount of power absorbed over the black-body
calorimeter between G and E and not upon whether this power is of electrical or radiative origin.

Radiant flux entering the copper calorimeter is absorbed in the black paint over the whole
of the internal surface. The radiant power is not, and need not be, absorbed uniformly over
the surface, but once absorbed it can follow only one path out of the calorimeter and towards
the heat link to the 2 K reservoir. This path is through the supporting ring A and along the
copper link AB, which also acts as a radiation screen for the heater windings. The thermometer
is placed at D in good thermal contact with B. Similarly, when electrical energy is supplied
the heat is developed only in the heater varnished to the outside of the calorimeter. The heater
leads are superconducting and so no electrical power is developed in them. The question of
thermal conduction in the leads and their thermal anchoring is an important one, which is
dealt with later. As is the case for radiant heating, electrical energy developed in the heater
can only flow through the walls of the calorimeter to A and hence via B to the stainless-steel
heat link. The thermal diffusivity of copper at 4 K is about 10® times its room temperature
value, due mainly to its very much smaller heat capacity at low temperatures. This allows one
to use a relatively large mass of copper for the calorimeter, about 300 g, while maintaining
a relatively short response time. The time constant of the whole calorimeter and heat link
assembly increases linearly from just over 3 min at a calorimeter temperature of 4 K to 6 min
at a calorimeter temperature of 8 K.

The presence of temperature gradients in the calorimeter can be ignored because the
temperature of the calorimeter (< 8 K) and its surroundings (2 K) are much too low for
radiative losses from the calorimeter to its surroundings to lead to significant errors. For such
errors to reach 1 part in 10® of the measured power, a difference of more than 1 K along the
length of the calorimeter would be required. The maximum such temperature difference that
could exist, if all the heat were to be applied at one end, is about 40 mK for a total power
input of 1 mW. The question of energy transfer by gas conduction is dealt with later, in §8.
Except for particular effects observed with the small pair of apertures, which result from



RADIOMETRIC MEASUREMENTS OF 0 AND T 109

thermal radiation

A AAAARARA NV

calorimeter
2K<T<10K
heater
(in six sections)
thermal
anchor
radiationscreen”  N\eNW 4444449090420 T===-====

1

1

I

1

1

1

1

: germanium
1 resistance

! thermometer

B D.
superconducting ==/ L  guemeec———
leads

poorly conducting
heat link
(stainless steel)

@ T ¢

4 thermometer leads

i
/11777711 77777777777

2 K superfluid-helium reservoir

19 heater leads

[

Ficure 11. A schematic representation of the calorimeter, stainless-steel heat link and 2 K reservoir.

condensation of hydrogen, the corrections that must be applied for gas conduction are small
because the pressures rarely exceed 107° Pa (7 x 1078 Torr).

The absorptivity of the calorimeter is not calculated separately, but is part of the overall
thermal radiation transfer function, which is calculated in §4. The only question that needs
to be considered here is the effect of a finite thermal conductivity of the black paint. We have
already deduced that the thermal conductivity of 3M black at liquid-helium temperatures is
about 0.05 W m™! K™1. The maximum radiant power is absorbed about halfway down the
calorimeter (see §4), but this does not exceed 0.1 W m™2. For a layer of paint 100 pm thick
this leads to a temperature drop across the paint of 0.2 mK, which is negligible.
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(b) The construction of the calorimeter and 2 K reservotr

The detailed designs of the calorimeter and the 2 K reservoir are shown in figure 12. The
calorimeter itself is made from electro-formed copper 0.25 mm thick and is coated on the inside
with a 100 pm thick layer of 3M-C 101 paint; it is 7 cm in diameter and 38 cm long and has
a re-entrant cone soldered at the closed end. The supporting ring A is soldered in place and
bolted to the lower flange of the radiation screen. The upper flange of the radiation screen,
which also supports the calorimeter, is bolted to the top plate, which is made from 1 mm thick
copper. The well in which the germanium thermometer is placed is soldered in the top plate,
which is bolted to the cylindrical stainless-steel heat link. The latter is 9 cm in diameter, 4 cm
long and 0.25 mm thick and is soldered to the top of a copper cylinder bolted to the 2 K
superfluid-helium reservoir. The 2 K reservoir is made from oxygen-free high-conductivity
(o.f.h.c.) copper and the top and bottom plates were joined to the side walls by electron-beam
welding to reduce the likelihood of leaks to superfluid helium.

(¢) Temperature measurement and control of the calorimeter and 2 K reservoir

The purpose of the 2 K reservoir is to provide a constant-temperature heat sink into which
the heat absorbed or developed in the calorimeter can be passed via the stainless-steel heat link.

The accuracy with which it is necessary to control the temperature of the 2 K reservoir and
to measure the temperature of the calorimeter depends upon two factors: first, upon the
accuracy sought in the comparison of radiant and electrical powers, in this case 1 part in 105,
and second, upon the variation of the thermal conductivity of stainless steel with temperature.
For a thermal conductivity that is independent of temperature, it is only necessary to ensure
that the temperature difference between calorimeter and reservoir is the same to 1 part in 10°
for radiant and electrical heating. This is not the case here, however, since the thermal
conductivity «(7T) of an 189,Cr-89,Ni stainless steel between 2 and 10 K is given by the
relation (Touloukian et al. 1970)

k(T) = 3.5x 1074 T1-3 W cm™ K1,

So for a stainless-steel heat link of cross-sectional area 4 and length L, the steady-state heat
flow @ across an element of length d/ is

Q =3.5x107* T3 4dT/dl, (14)

which we write as Q = CAT dT/dl (15)
(L T,

so that Q dl=C4 J T1-35dT, (16)
1=0 T

where T, is the temperature of the 2 K reservoir and 7, the temperature of the calorimeter.
Hence Q = CA(T2%—T2%)/2.35 L. (17)

The change in heat flow, 89, for incremental changes in temperature 87,4 and 87}, of the ends
of the heat link is

8@ = CAL Y TL% 8T, — CAL™ T 8T,,, (18)
50 TL358§T _ T135§T
so that —QQ— = 2.35 ( < T§'3c5— TZ% rs). (19)
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For 8Q/@ equal to 1 x 1075, we show in figure 13 the magnitudes of 87, and 87, that can
be permitted. This is reflected in the sensitivity of the calorimeter, i.e. the change in resistance
of the germanium resistance thermometer for a given increment of radiant power absorbed by
the calorimeter expressed in ohms per milliwatt, and shown in figure 14 as a function of T.
Itis necessary to measure 7T, to rather better than 4 parts in 10 to achieve an equality of radiant
and electrical heat input with an accuracy of 1 part in 10°. Figure 14 also shows the sensitivity
of the germanium resistance thermometer. It is clear that the overall sensitivity of the
calorimeter as a detector of thermal radiation is greatest at the lowest temperatures.
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Frcure 13. The permitted changes in temperature of the 2 K reservoir, 3 T and the calorimeter 3 7;,, which still
allow an accuracy of 1 part in 10° in the comparison between radiant and electrical power.

The helium in the 2 K reservoir is continuously pumped through a precision needle valve
and an a.c. bridge system is arranged to provide the final temperature control. For radiant
powers in the range 175 pW to 5 mW we require (see figures 13 and 14) a temperature stability
at the smallest powers of better than 5 uK. Figure 15 shows an outline of the control system.
The a.c. bridge is arranged to provide, at balance, an offset current of about 25 mA, which
flows through the heater H, directly immersed in the superfluid helium, to generate up to 20 mW
of power. The sensor for the controller is a germanium resistance thermometer having a
perforated case directly immersed in the superfluid helium. Over a period of 2 h the total drift
and short-term fluctuations in the temperature of the 2 K reservoir do not exceed 4 puK.

The temperature of the calorimeter is measured by means of a germanium resistance
thermometer (Cryocal CR 1000) attached as shown (D in figure 12). The resistance of this
thermometer is measured by using a Cryobridge Model 103 (ASL Ltd). This is an a.c.
potentiometric system, operating at a frequency of 25 Hz, which in our measuring range of
200 Q to 1000 Q has a resolution of 2 parts in 10%. Using the data shown in figure 14, we can
calculate the sensitivity of the whole system, i.e. the minimum detectable change in radiator



RADIOMETRIC MEASUREMENTS OF ¢ AND T 113

radiator temperature/K

233 273 323 373
T T T T
L 1000- 1o
g
3 " .
=~
Z 800[
2 -8
Z N
8 -
5 6001 M
c i
< L -6 &
8
g
g 4001 -
&
- -
8 4
g 200 sensitivity
O —
g L
3
c L | | 2
0 0 1 2 3 4 5
radiator power/mW
Ficure 14. The resistance of the calorimeter thermometer, O; its temperature, ——; and sensitivity in ohms per

milliwatt of measured power, ®.

r

heater
controller

|

Y

[m ]

amplifier

phase-
sensitive
detector

¥ %O

;

H

M

e

R, R,

2K superfluid-helium

reservoir

phase
shifter
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germanium resistance thermometer element (a thermometer having a perforated case) and H is a 30 Q
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temperature AT that can be measured by the calorimeter. This is shown in table 3 for various
radiator temperatures between —40 and + 100 °C. At each temperature the table also shows
the resistance R, and the sensitivity S, in ohms per milliwatt, of the calorimeter thermometer.

(d) The calorimeter heaters

Electrical energy is developed in a wire-wound heater on the outside of the calorimeter. In
designing the heaters it was decided to provide a sufficient range of resistance to cover the power
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TABLE 3. THE SENSITIVITY OF THE SYSTEM

(In this range of resistances the self-heating in the thermometer due to the measuring current causes an increase
in thermometer temperature of about 8 mK for a power input of 0.9 pW. This power must remain stable to within
0.3%.)

R,/Q S/(Q mW) T/K AT/mK

1017 830 233 0.1
700 330 273 0.15
400 110 326 0.3
340 80 344 0.3
256 50 375 0.4

range from about 175 pW up to 17.2 mW, while at the same time allowing a measure of
redundancy among the windings to allow the same power to be developed using different
heaters. The maximum power is equivalent to a radiator temperature, for the large pair of
apertures, of just over 230 °C, the freezing point of tin. A very convenient way of measuring
the heater power is by means of voltage and current measurements made with a digital
voltmeter displaying, in turn, the voltage across the heater and across a similar standard resistor
in series. It was decided to use an S.E. Laboratories six-decade voltmeter with a resolution of
1 pV on the 1.1 V range. Tests showed a linearity within +2 puV over the whole of this range.
This range was chosen to enable direct comparisons to be made with a standard cell.

To cover the whole of the range of expected power and at the same time maintain adequate
voltage resolution, we chose the resistances of the individual sections of the heater in the
following way. We require a heater having n sections of resistance R, aR,a’R...a" 'R and
specify a minimum of V,;, and a maximum V.., where V.. = 1 V, across each section. Since
V2 in/a® 'R =175 pW and V2 /R = 17.2 mW, we deduce that R ~ 58 Q. For there to be
continuity from one section to another we must have V2, /R= V2%  /aR ie.a= V2,  /VZ..
To choose V,,;,, a criterion must be selected in terms of the required resolution in the temperature
of the absorbed radiation. Since the absorbed power @ oc T* for radiant heating and ¢ oc V2
for electrical heating, dV/V,,;, = 2dT/ T, where dV is the voltage resolution for a temperature
resolution d7". So for a voltmeter resolution of 1 pV and a temperature resolution of 0.2 mK
at T = 273 K, we require V,;, & 0.68 V and hence a ~ 2.15. Substituting for V;,, R and
a leads to n & 6. The values of the resistances required in the six sections of the heater and
the six standard resistances are given in table 4, after slight rounding to get an integral number
of turns.

TABLE 4. RESISTANCE OF THE SIX HEATER SECTIONS

resistance/Q) number of turns
2645 194
1230 90
572 42
266 20
124 9
57.5 4

The heater wire is varnished 0.1 mm diameter ‘Eureka’ having a resistance per unit length
at 4.2 K of about 62 Q m™! and is held in place by GE 7031 low-temperature varnish. For each
heater section the equivalent standard resistance was made for us by the Croydon Precision
Instrument Co. Ltd. The measured power is given by V, V. /R, where V, and V, are the voltage
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drops across the standard and heater resistances respectively, and Ry is the value of the standard
resistance. Each measurement is the mean of the measured values before and after current
reversal.

The heater circuit is shown in figure 16. The power supply was designed to supply a constant
current in the range 0.1-15 mA with a stability of 1 part in 108. The value of the current is
set manually by means of a potentiometer. The current source and the standard resistances
are all maintained in a constant-temperature enclosure at (24.0+0.1) °C. The current through
the heater circuit is set and reversed manually, but the readings of V, and V, are taken from
the digital voltmeter by the HP 85 microcomputer. The heater standard resistances are
calibrated against Tinsley class S 100 or 1000 Q standards calibrated in turn against the
standard of the ohm, maintained by the NPL, at the end of 1979, 1980 and 1982. The digital
voltmeter was calibrated against a Tinsley standard voltage enclosure calibrated against the
standard of the volt maintained by the NPL. The enclosure was continuously monitored in
the NPL Electrical Science Division over a period of three years up to 1978 and re-checked
in 1981.
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Ficure 16. Outline of the power supply for the calorimeter heater. The broken lines indicate connections made
during tests of the system with alternative instruments.

The internal consistency of the electrical power measurement was checked by supplying the
same power to the calorimeter in two different ways: first by using a low-resistance heater and
high current and, second, a high-resistance heater and low current. No significant difference
in the response of the calorimeter could be observed within the limits of resolution of the digital
voltmeter. Current reversal, which was made during every run, resulted in changes in observed
power that rarely exceeded 2 parts in 10°. Two further independent checks were also made:
the digital voltmeter was replaced by a Guildline Direct Current Comparator Potentiometer
Model 9930, and the power supply was replaced by a programmable power supply, an Adret
d.c. Voltage and Current Standard Model 103 A. Neither of these changes resulted in
detectable differences in measured power.

Uncertainties stemming from electrical power measurements are estimated to be 2 parts in
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10° for the absolute measurements and 0.5 parts in 10 for the ratio measurements. They do
not therefore contribute significantly to the overall uncertainty of either the Stefan—Boltzmann
or thermodynamic-temperature measurements.

(¢) Thermal anchoring of heater and thermometer leads

From the six sections of the heater a total of nineteen leads pass through the supporting ring
at A (figure 12) and require thermal anchoring on the copper shield between A and B. Four
leads from the germanium resistance thermometer must be anchored between D and B. If] as
is necessarily the case during electrical heating, the heater wires are at a slightly higher
temperature than the calorimeter upon which they are wound, the heater leads must be
thermally anchored between A and B (figure 12) before they cross the stainless-steel heat link
to C. If this is not the case, the essential condition that the germanium resistance thermometer
responds equally to radiant and electrical heating of the calorimeter will not be met. The
temperature difference between the heater wire and the calorimeter is difficult to calculate with
precision since it depends upon the thermal contact between them and this is difficult to
evaluate. However, a conservative calculation leads to the conclusion that the largest
temperature difference likely to be encountered in the present work is about 10 mK. This occurs
when the largest power is being supplied, namely about 4.5 mW (equivalent to a radiator
temperature of 100 °C for the large apertures), which is developed in the 124 Q heater section.

The heater leads are made from Nb-509, Ti superconducting wire, 0.25 mm in diameter,
from which a 0.04 mm thick coating of copper is removed, except at the ends where it is kept
for soldering purposes. Each of the 19 leads is threaded through a polyethylene tube of internal
diameter 0.5 mm and wall thickness 0.25 mm. The insulated leads, each 1 m long, are wound
on the outside of the radiation screen AB (figure 12) and then pass across the stainless-steel
heat link to the thermal anchor at C.

If the temperature difference between the heater and the calorimeter is AT}, the temperature
difference AT, between an element of the lead, which is a distance x from the heater, and the
radiation screen at the same temperature as the calorimeter is given, to a sufficiently good
approximation, by

AT, = AT, e, (20)

where m? = h(kA)™1, in which 4 is the rate of heat transfer to the substrate per unit length per
unit temperature difference, k the thermal conductivity of the wire and 4 its cross-sectional
area. We estimate & to be 8 x 1077 W cm™! K™! and we know that for the superconducting wire
K is given quite closely by k = 0.77 x 107* T*# W cm™! K™ in the temperature range 3 K to
the superconducting transition temperature, ca. 10 K (Schmidt 1979). These data lead to a
value of m equal to 0.83, so that any temperature difference is reduced by a factor of 1/e of
its value over a length of about 2 cm. Thus a total length of 100 cm is sufficient to reduce a
temperature difference of 10 mK to negligible proportions.

The four germanium thermometer leads are thermally anchored to the top plate of the
calorimeter, DB in figure 11, by varnishing about 30 cm of lead to the surface. This is adequate
for the thermometer leads because all that is required for them is good stability in the thermal
anchoring.

There remains the question of the total amount of heat that passes through the leads from
B across the stainless-steel heat link to C. There are 23 Nb—T1i superconducting leads between
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B and C, each one having had its thin copper layer dissolved away to reduce the overall thermal
conductivity. Using the relation given above for the thermal conductivity of Nb— Ti, we can
write down an expression for the heat conducted from B to C by analogy with that for the
stainless-steel heat link itself, equation (17) above:

Q(leads)/W = 23CA(T28— T28)/2 8L, (21)

where C=0.77x10*Wcm™, 4 =2.3x10"*cm? and L ~ 8cm. ((leads) increases from
about 1.5uW, i.e. about 0.1 9%, of the total measured power, for 7, = 5K, to 1.2 mW, or 26 %,
of the total measured power, at 7, = 8.6 K. Although these are not large fractions, it is crucial
to the success of the measurements that they be reproducible to a small percentage. For this
we rely upon the stability of the thermal anchoring at B and at C, which is provided by an
8 cm length of ‘Biccastrip’ firmly bound with copper wire to the copper cylinder. Biccastrip
is a proprietary flat multi-way cable made from thin strips of copper, 0.1 mm X 2 mm,
embedded in a polyester plastic having a total thickness of 0.3 mm. For the dimensions we have
used, m (equation (20)) is estimated to be 1 cm™, i.e. temperature differences are reduced by
a factor 1/e of their value for each centimetre of anchoring. With 8 cm length it is clear that
the thermal anchoring is adequate.

4. THERMAL-RADIATION TRANSFER FUNCTION

Having described separately the radiator and the calorimeter, we come now to the question
of the transfer of thermal radiation from the one to the other. To do this we calculate an overall
thermal-radiation transfer function F(e, a), considering as a whole the system formed by the
radiator, the apertures and the calorimeter. Each element of the internal walls of radiator and
calorimeter has its own value of (effective) emissivity, €, or absorptance, a. These depend upon
the distance of each element from the respective aperture and its orientation with respect to
the aperture. In addition, we must take into account the vignetting effect of the upper aperture
with respect to the lower. The effect of temperature gradients over the radiator must also be
included. This is done by developing an expression for an ‘ effective temperature’ of the thermal
radiation absorbed by the calorimeter in terms of the temperature gradients in the radiator
and the other factors mentioned above.

(a) The effective temperature of the radiator

The radiant power dP(T}) absorbed by the calorimeter from an element of width dx at
temperature 7, situated on the cylindrical wall of the radiator a distance x from the aperture
(see figure 17) is given by

dP(T;) = V(x) ay(y,9,) dE(T), (22)

where V(x) is what we call the ‘view factor’ and represents the vignetting effect of the upper
aperture on the lower aperture when viewed from dx; a,(y, y,) is the mean absorptivity of the
calorimeter between y, and y, for radiation incident from the direction of dx, and dE(7},) is
the radiant power emitted by the element dx that passes through the lower aperture. The
subscript x indicates a quantity or an element on the cylindrical wall of the radiator or
calorimeter. The addition of a subscript ¢ indicates a quantity or an element on the conical
wall of the radiator or calorimeter. Thus we can write down an expression for the radiant power

8 Vol. 316. A
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X

(a)

Ficure 17. The geometry used in the derivation of the thermal-radiation transfer function. The inset () shows the
geometry used in the calculation of the view factor V(x), and () shows rays undergoing specular reflection
at high angles of incidence in the radiator (cf. figure 6).

dP(T,,) absorbed by the calorimeter from an element dx on the conical base of the radiator
having a temperature T,:

dP(Tey) = Ve(¥) acy(9192) AE(Tcq), (23)
where dE(T,,) is the radiant power emitted by the element dx situated on the cone that passes

through the lower aperture. The paired subscripts x, ¢ indicate a quantity that includes terms
from both the cylindrical and conical walls. Thus the total radiant power P(T, .) absorbed
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by the calorimeter from elements on the cylindrical wall of the radiator and from its conical
base can be written

PT0=[ VWl BT At [ Vil BT ar (24)
cylinder cone
Taking the expressions for dE(T,) and dE(T,,) derived in Appendix C, we have:
2me(x) a,(y,y,) H*RY, V(x) E(T,) xdx
P(T, ) = 2 2\2
cylinder (x +H)

* f L 2mRE Q tan® fy (7 — Qx0) V() € (x) aey (41 42) E(Top) dx, - (26)

where E(T),) is the total radiant exitance of the element dx at a temperature T}, €(x) and €, ()
are the emittances of elements on the cylindrical walls and cone respectively, y is the angle

of the cone (30°) and @ the distance of the tip of the cone from R, (36.5 cm); the radius of
the cylinder is H (6 cm).

Let P(T) be the radiant power absorbed by the calorimeter for a uniform radiator,
temperature 7, such that

E(T,) = E(T)+AE(T,) and E(T;) = E(T)+AE(T,), (26)
where AE(T,) and AE(T,,) < E(T). We can thus write

P(Tye) _ U €(%) ay(y14,) H?V(x) [E(T) + AE(T;)] xdx
P( T) cylinder (x2 + H2)2

4] Quantly(rt— Q) Vols) ols) el 43) [E(T) +AB(T,0)] ds}

cone

€(%) ay(4145) H?V(x) E(T) xdx
8 {fcylinder (x2 + H2)2

+fcone Q tan® §y (¢~ — Qx7°) Vo (x) €(%) acy (41 42) E(T) dx}_l- (27)

Writing the first term of the denominator of (27) as E(T) B,(e,a) and the second term as
E(T) B,(e, a) and rearranging we find

P(T,c) _ €(x) a,(y145) H*V (%) AE(T,) xdx
P( T) B {E( T) [Bl <€, a) +B2(6’ a)] +fcylinder (xz + H2)2

cone

| Quantly(r— Qe Vy(x) eo(x) a2 2) AE(T,) dx}
X (E(T) [B,(e, a) + Byle, a)]}* (28)

_ €(%) ay(y,45) H?V(x) AE(T,) xdx
=14 {fcylinder (x2 + H2)2

+ Q tan2%'y(x_2— Qx_a) V;(x) 6c(x) acx(yl yz) AE( T;:x) dx}

cone

X{E(T) [By(6,a) + By(e, )} (29)
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But since €(x), €.(x), a,(y,y,) and a.,(y,y,) are very close to unity and AE(T,) and
AE(T,,) < E(T), we shall for the time being set e(x) = €,(x) = a,(y,y,) = ao,(y,¥,) = 1 and
write B,(e,a) = B, and B,(e,a) = B,. Later on we shall return to B,(e,a) and B,(e,a) for
calculating the overall radiant energy transfer function. First, however, we derive expressions
that allow us to calculate an effective temperature T for the radiator on the basis of known
temperature distributions T, and T,,.

From (29) we can write

P(T, )—P(T) 1 f H2V(x) AE(T,) xdx
P(T) _Bl+Bz cylinder E(T) (x2+H2>2

1 1 AE(T,
+Bl+B2 jcone Q tan2%')/ <ﬁ_%) VC(x) EETc)x> . (3())

However, the dimensions of the cone, its thermal diffusivity and measured temperature-drift
rates allow us to say that T, is uniform over the whole of the cone, and noting that
€.(x) = a,,(y,9y,) =~ 1 and writing E(T,,) —E(T) = AE(T,) we can write

P(Tz,c>_P(T) =AP(Tz T;:):

and remembering that the integral in the last term of (30) is the same as B,, from (29) we can

write AP(T,T,) 1 J HV(x)AE(T,)xdx B, AE(T,) 1)
P(T) B+ B, Joytinaer  E(T) (®+H®%® B, +B, E(T)
But because of the fourth-power dependence of P upon 7 we can write
AP(T,T,) 4AT(T,T,) AE(T,) 4AT, . AE(T) 4AT, .
P(Ty T ° ET) T ™ TET T T (32)

where AT, = T— T, and AT, = T— T, in which T is an arbitrary temperature close to T
and T,. We can therefore write

AT (x,c)

1 H2V(x) AT, xdx B
cylinder

~ B, +B, (®+ H?)? B, +B,

We shall take T = T, i.e. the temperature of the thermometer on the radiator (see figure 7)
so that in terms of the temperature given by the thermometer the effective temperature T'(x, c)
or strictly Tg5(x, c) becomes
1 H?2V(x) AT, xdx B
T(x,c) =T +—5 f = 2
( ) ! Bl+Bz cylinder (x2+H2)2 Bl+Bz

AT, (34)

In this expression AT, = T, — T;, where T, is the temperature of the cone given by the mean
of thermometers 3 and 2, and AT, = T, — T, where T is the effective temperature of the
radiation from the element x. Were €(x) equal to or close to unity (approximately equal to 0.95,
for example) we could write T, = T,, but owing to the large specular reflectance of 3M paint
at high angles of incidence such an assumption is not good enough, despite the fact that AT,
is small. Over most of the cylindrical wall the angle of incidence of the radiation passing to
R, is greater than 78°. This is illustrated in figure 174. By calculating the angle of incidence
as a function of x and using the specular reflectance shown in figure 6 as a function of angle
of incidence, we find that, to a good approximation, the specular reflectance pg,(x) for a ray
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striking the cylindrical wall for 27 < x < 60 is given by pg,(x) = 0.012x, and for the same ray
striking the cone by pg,(cx) = 0.002x. The radiation from an element dx thus comprises the
fraction (1—0.012x) of radiation of temperature T, with the rest coming from the cone and
regions further down the cylinder. Since the specular component of reflectance is very low at
angles of incidence less than 70°, we can deduce that most of this remaining radiation originates
from the cone with only a small further proportion coming from the cylindrical wall near the
second reflection, which occurs at values of x & 57 cm. Since both AT, and AT, are small, we
take the effective temperature 7', of element dx to be given by

T, = (1—0.012x) T,+0.012x[ (1 —0.002x) T, +0.002x T (x = 57)]. (35)
So that, finally, we can write
1 H2V(x) (T,— T;) xdx B
T(x,c =T+—f z_ 1 2 _(T,—T). 36
( ) ! Bl+Bz cylinder (x2+H2)2 Bl+Bz ( 3 1) ( )

The view factor V(x) is evaluated in Appendix B for the two pairs of apertures. The
temperature distribution in the radiator T, is calculated on the basis of measured values of
T,, as described in §2 (c).

(b) Thermal-radiation transfer function, F(e, a)

Having shown how to assign an effective temperature to the radiation leaving the radiator
and absorbed by the calorimeter, we now return to the evaluation of the integrals B,, B, and
also B, (e, a) and B,(¢, a) of (27).

The thermal-radiation transfer function, F(e,a), or net emissivity—absorptivity of the
system, is given by

Fle,a) = [B,(e,a) + By(6,a)]/ (B, + By). (37)

To evaluate B,(e,a) and B,(e,a) it is necessary to find expressions for the emittance of
elements over the cylindrical wall and cone of the radiator and of the calorimeter.

The calculation of these quantities is relatively straightforward because the emittance of 3M
black is very high, about 0.94, and for the radiator the solid angle subtended by the aperture
at all wall elements of both the cylinder and cone is very small. The effective emittance and
reflectance of 3M black for thermal radiation is discussed in §2 (b). Here we take only the result
that it behaves as a diffuse emitter and reflector of thermal radiation and has a reflectance,
which we have already estimated, of about 0.06 at angles to the normal of less than about 70°,
and at higher angles it becomes an increasingly specular reflector.

Taking first the radiator, for an element dx on the cylindrical wall a distance x from the
aperture, we can write down its apparent emissivity €(x) in the direction of the aperture by
using the series reflection method (Quinn 1980, 1983) as

e(x) = 1—R(x), (38)

where R(x) is the fraction of the radiant flux incident on dx from the direction of the aperture
that is eventually reflected out of the aperture after one or more reflections inside the radiator.
This fraction can be written down as a series of terms in increasing order of p(x), the reflectance
of the wall. For simple cavity configurations such as ours (a cylinder having a conical or inclined
base) it has been shown that, provided the emittance of the walls is high and the aperture
relatively small, the emissivity calculated by the series reflection method using only the first



122 T.J.QUINN AND J. E. MARTIN

few terms is very close to the exact value (Quinn 1980). For a simple cylindrical cavity we can
write,

6(x) = 1—p(x) 171dR(x) cos O~ (x) p(x)*— 3 [p(x)]" I, (), (39)

3

M8

where d€2(x) is the solid angle subtended by the aperture at the element dx, @ is the angle of
incidence of a ray coming through the aperture striking the wall at x, and the /,, are geometrical
factors (see below).
For the cylindrical part of the radiator for which 23 < x < 60 cm, this can be written
2 2 0

e18) = 1=pls) (s g a(0) (0= . [p(a)1" 1,0, (40)
where R, is the effective radius of the aperture as defined in Appendix A, H is the radius of
the cylindrical part of the radiator and the last term represents a series of geometrical factors
giving the fractions of radiation reflected out through the aperture after z successive reflections
in the cavity. For x = 25 cm, we find that I, & 0.05 and falls rapidly for increasing values of
x (Quinn 1980), so the term in [p(x)]?, although equal to 3 X 107° at x = 25, rapidly falls below
1 x 107° for larger values of x and can therefore be ignored. Similarly, the remaining terms fall
very rapidly since [p(x)]" is so small. We can thus write, to a sufficiently good approximation,

€(x) = 1—p(x) R2xH/(x*+ H?)2. (41)

This expression, however, must be modified to take into account specular reflection at high
angles of incidence and we must write

€(x) = 1—=p(x) R§xH(x* + H?) 72 [1 = pgp (%) ] — R (x) pp (*), (42)

where pg,(x) is the fraction of the radiant flux specularly reflected at x and is given by
Psp(x) = 0.012x, as we have already seen, and R’(x) is the fraction of this specularly reflected
flux that is subsequently reflected out through the aperture. When calculating the effective
temperature of the radiator, we remarked that the multiple reflections between the cone and
the cylinder are such that the angle of incidence very rapidly falls below 70° and the reflections
become, once again, diffuse and small. R'(x) is thus practically constant and represents the
fraction of radiation reflected out of the aperture after reflection from elements of the radiator
in the region of x = 57 cm. Thus, finally,

€(x) =1—p(x) R2xH(x>+ H?)™% (1—0.0125x) — 0.012x R’ (x = 57), (43)

but R (x = 57) = p(x) R2xH(x*+ H*)™% cos 0, (44)
but also since R’(x = 57) is less than about 1073 it is negligible so that

e(x) =1—p(x) R2xH(x*+ H?*) ™2 (1—0.0125x). (45)

For the conical part of the radiator we need take account only of the term in p(x) in (39).
The specular component of reflectance for elements on the surface of the cone a distance x from

the aperture is given by
Psp(%,¢) = 0.0067x, (46)

obtained in the same way as the expression for pg,(x). The emittance of an element on the
surface of the cone can be written

ec(x) = l—p(x) d.Q(x) cos 6 [1 _psp(x: C)]: (47)
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which for the particular case of the conical part of the radiator becomes

_ plx) @ sindy R3(1—0.0067x)
[x*+ (x— Q)? tan®Ly]}

We come now to the calculation of the absorptance of elements on the cylindrical and conical
walls of the calorimeter, for which the distances from the aperture are represented by y. We
find that we must take into account the equivalent term in /,(x) of (39), since not only is the
smallest value of y equal to 6 cm, rather than 23 cm as for the radiator, but the aperture is
larger as well. For the calorimeter we write the absorptivity a(y) as

a(y) = 1—[p(y) n~1dR(y) cosO+p(y)*n 2 L(y)] [1 —psp(¥)] —Psp(y) R (3). (49)

The specular component of the reflectance of elements on the cylindrical wall, deduced as
before, is given by pg,(y) = 0.022y.

In this case we find that R’(y), for y = 35, is equal to 2 x 107° (not negligible), so that we
write

€.(x) =1

(48)

R% yH 2 R?
oty) = 1=|pto) i+ (B G L/ o) | (1 =pp ] 2100y (a), (50)

where H, is the radius of the cylindrical calorimeter, equal to 3.5 cm, and Ry is the radius

of the virtual image of Ry in the aperture cone and is equal to 2.2 and 1.9 cm for the large

and small aperture pairs respectively. Using the tabulated values for I, (Quinn 1983) for a

cylindrical cavity, we find that the term in I,(y) falls very rapidly with increasing values of y

and falls below 1073 for those parts of the calorimeter more than about 25 cm from the aperture.
Similarly, for the cone of the calorimeter,

ac(y) = l_p(y) n~! cos 6 d‘Qc(y) [1 _psp(y)] _psp(y) R/(?/)s (51)
where in this case pg,(y,c) = 0.002y, so that

| _PW) @singy R, (1—0.002y)
[¥*+ (x—Q)* tan®*{y]i

a(y) = 2x107° pgy(y, ). (52)

We now have expressions for the emissivity of elements along the cylindrical wall, ¢(x), and
of elements on the cone of the radiator, €,(x), and the absorptivity of elements along the
cylindrical wall, a(y), and of elements on the cone of the calorimeter, a,(y). Hence, we can
proceed to a numerical evaluation of the integrals of (29). Before doing so, however, we come
to the experimental measurement of the absorptivity of the calorimeter.

Measurements of reflectance were made for us by E. Zalewski of the NBS on a replica of
the calorimeter having the same dimensions and painted on the inside with 3M-C 101 in the
same way. The reflectance of the cavity was measured by using a laser reflectometer at a
wavelength of 633 nm. The overall uncertainty of the experimental measurements was
estimated as 6%,. The results are shown in figure 18, together with curves for the values
calculated from (50) and (52). The agreement between the measured values and those
calculated here is generally very good, but at large values of y the measured values of reflectance
are consistently higher than the calculated ones.

Calculations (Bedford, personal communication 1983) made by using the more exact integral
equation method, but assuming a diffusely reflecting surface with no specular reflection also
led to calorimeter reflectances lower than those measured by Zalewski for large values of y.
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Ficure 18. The reflectance of the calorimeter for the large pair of apertures, [1—a(y)] and [1 —a,(y)],
calculated from (50) and (52): @, measured values of (Zalewski, personal communication (1979)).

The most likely explanation for this difference between measured and calculated reflectances,
as has been suggested already in §2(b), is that 3M paint exhibits a small amount of
retro-reflection, about 0.5 x 107* at 633 nm. It is probable that slightly more retro-reflection
occurs at longer wavelengths due to the structure of the paint and the increasing transparency
of carbon black and silica. We have, therefore, adopted an overall correction for retro-reflection
of (1£0.5) x 1074, This correction applies equally to the absorptivity of the calorimeter and
to the emissivity of the radiator and thus contributes a correction of (24+1) X 107* to the
thermal-radiation transfer function. This correction is made after the evaluation of the integrals
contained in (29).

Returning to the evaluation of these integrals, we must first use (50) and (52) to find values
ofa,(y,y,) and a,.(y,y,). These are the weighted mean values of a(y) and a,(y) between y, and
y, when viewed through the apertures from the element dx in the radiator (see figure 17). The
values of y, and y, are calculated while taking into account the vignetting effect of the apertures.
For each value of x a weighted mean is deduced from the geometry of figure 17 and the values
of a,(y,), a,(¥,), a,c(y,) and a,.(y,) are calculated from (50) and (52).

Since all the calculations of emissivity and absorptivity are made in terms of reflectance, it
is convenient to define the functions G(x) and G,(x) given by

G(x) = 1—e(x) ay(9:95)s (53)
Gelx) = 1—€c(*) 8c4 (91 92)- (54)
We thus write B, (€, a) from (29) in the form
T2 _ H2 x
o= [ B=OEI s s0r o
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and similarly we rewrite for B,(e, a),

x

B,(e,a) = f

[1 =G, ()] Q tan® by (x72 — Qx~?) V() du. (56)
=2,
G(x) and G, (x) represent the departures from the ideal thermal-radiation transfer between an
element at x on the radiator and the calorimeter. Figure 19 shows G(x) and G, (x) for both the

large and small pairs of apertures.

I T T T T T
15— b
= » -
? - -
S 10 .
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= - ———-small pair of apertures ~
5+ o
B cylinder< 7]
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distance from aperture, x/cm

Figure 19. G(x) and G,(x), defined in (53) and (54), as a function of distance from the lower aperture along the
cylindrical part of the radiator. Values for both large and small pairs of apertures are shown. The ordinate
is a measure of the departure from ideal black-body conditions of the radiator—calorimeter system.

Now returning to (37), we find that numerical integration leads to the following results.
(1) For the cylindrical part of the radiator:

B,(e,a) = 4.75252 x 1073 (large apertures), B, (e,a) = 7.67027 x 107* (small apertures),
where x; = 23 and 40 for large apertures and small apertures respectively, and x, = 60;
B, = 4.75412 x 1073 (large apertures), B, =7.67128 x 107* (small apertures),

where x, and x, are the same as for B, (¢, a).
(2) For the conical part of the radiator:

By (€,a) = 3.73444 x 1072 (large apertures), B,(e,a) = 3.17221 x 1073 (small apertures),
where x; = 60 and x, = 38.5;
B, = 3.73628 x 1072 (large apertures), B, = 3.1724 x 1072 (small apertures),

where x, and x, are the same as for B, (¢, a).
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Substituting the values into (37) for the thermal-radiation transfer function:

F(e,a) = 8.48696/8.4904 = 0.99959 (large apertures),
F(e,a) = 3.93924/3.93953 = 0.99993 (small apertures).

The values of B, and B, evaluated above are used in (36) to calculate the effective
temperature of the radiator. If we assume that the temperature of the cylinder (as well as that
of the cone) is uniform, (36) shows that fractions B,/ (B, + B,) and B,/ (B, + B,) of the measured
radiation come from the cylinder and cone respectively. For the large pair of apertures these
fractions are 0.56 and 0.44, and for the small pair 0.195 and 0.805, respectively. The numerical
integration and evaluation of the various terms in (32) have been made to six significant figures
and only the final results have been rounded to 1 part in 10°.

To obtain the final values of F(e, a) we must take into account the retro-reflection estimated
at (1£0.5) x 107 for both €(x) and a(y). This leads to a reduction in F(e,a) of (2+1) x 107*
so that, corrected for retro-reflection,

F(e,a) = 0.99939 (large apertures), F(e,a) = 0.99973 (small apertures).

The uncertainty in these values of F(e, a) comes from the following sources.

(a) The geometrical calculation of V(x) and V,(x). This is considered to be insignificant.

(b) The values of G(x) and G,(x). This source of uncertainty is an important one because it
enters directly into the calculation of B, (€, a) and B, (e, a). Since the surface reflectance p enters
into the expression for G(x) twice, once in €(x) and once in a,(y, y,), and these two are correlated,
the uncertainty in G(x) is 20 9, of its value. This leads to an uncertainty of 20 %, in (1 — F(e, a)),
namely 8.2 X 1075 and 1.4 X 107 for the large and small pairs of apertures respectively.

(¢) The retro-reflection correction. This is estimated to be 50 %, of'its value, namely 1 x 1074, This
has been estimated on the basis that the observed difference of 5 x 107° between the calculated
and measured values of a(y) at large values of y is due to retro-reflection and, further, that at
long wavelengths the increasing transparency of carbon black and silica suggest that the
retro-reflection is likely to be somewhat larger.

(d) The specular reflection factor pg,(x). This is considered to lead to uncertainties in G(x) and
hence F(e, a) of less than 2 x 1075, In evaluating the effective temperature of the radiator, the
specular reflection plays a significant role when temperature gradients are unusually large. That
it correctly represents the optical behaviour of the paint is indicated by the fact that no
systematic difference in measured values of 7— 7¢, has been observed that can in any way be
related to the presence of temperature gradients. Any such effects were less than the standard
deviation in (7T — Tg,) values, equivalent to 2 x 1075 in F(e, a).

(¢) The absence of higher-order terms in (42), (48), (50) and (52). This is estimated to be 3 parts
in 10° for the large pair of apertures and 1 part in 10° for the small pair of apertures.

(f) The uncertainty in the geometrical disposition of the calorimeter and upper aperture. Since a(y)
increases very rapidly as the element dy approaches the aperture, any displacement of the
calorimeter along its axis towards or away from the aperture could make a significant difference
to the value of G(x). The mechanical design is such that the distance from the bottom of the
calorimeter to the aperture should be 2 mm. If instead this distance were 4 mm, the value of
G(x) would increase by 3 x 107° for the large pair of apertures. The tolerances are such that
the uncertainty in the separation of the upper aperture is estimated to be 2 mm and hence we
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take this uncertainty to be 3 x 107 for the large pair of apertures. It is negligible for the small
pair.

Taking all these uncertainties (¢)—(f) together and considering them to be independent we
find, from the square root of the sum of the squares, that for the large apertures we have an
uncertainty of 1.4 X 1074, and for the small apertures an uncertainty of 1 x 1074, so that

F(e,a) = 0.99939+0.00014 (large apertures),
F(e,a) = 0.99973+0.0001 (small apertures).

The most significant contributing factors to these uncertainties are the uncertainty in (c),
the long-wavelength retro-reflection, and in (4), the weighted diffuse reflectance of the paint.
The possibility of a significant reduction in these two sources of uncertainty is discussed in § 11.

5. THE APERTURES
(a) Manufacture and measurement

Two pairs of apertures were employed to enable systematic errors varying with aperture size
to be detected. The principal pair had diameters of 18 and 26 mm for the lower and upper
apertures respectively. These dimensions were chosen to give the best compromise between
conflicting requirements. A large diameter reduces diffraction and measurement errors and
facilitates construction, while a small diameter is needed to reduce black-body errors. The
second pair of apertures had diameters of 10 and 18 mm. In both pairs the lower aperture was
made smaller in diameter than the upper one to reduce the amount of radiation that could
scatter through the upper aperture after direct specular reflection between them.

The shape of the apertures is shown in figure 20. The system comprising the apertures and
the radiation trap (shown in figure 28) was designed to meet the following requirements:

(a) diffraction and scattering effects should be minimized;

(b) the thermal contraction on cooling from room temperature to liquid-helium temperatures
should be known and should not lead to significant distortion;

(¢) the design and choice of material should allow repeated assembly of the system, and allow
measurement of the aperture diameters and their separation to within a few parts in 10° at
room temperature.

This last requirement was one of the most difficult to meet, since it requires that the edges of
the apertures be sufficiently well defined to allow meaningful measurements to be made of
diameter to within about 0.5 um and of the distance between them to within about 2 um.

To reduce diffraction effects it is necessary (see §1(d)) to arrange for hemispherical
illumination of the lower aperture by the radiator, and hemispherical collection of transmitted
radiation at the upper aperture. This is helped by making the conical entry to the lower aperture
and the similar conical exit from the upper one as highly reflecting as possible. The apertures
should have as sharp an edge as is consistent with the requirements that the edges have a well
defined geometry and are not damaged by the measurement process.

It was originally decided to make the apertures and radiation trap of copper, because it was
the only material whose thermal contraction down to liquid-helium temperatures was
sufficiently well known. In addition, being a pure metal having a high thermal conductivity,
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L 50 mm ]

Ficure 20. Cut-away sketches of the upper and lower apertures (large pair). A and B reference surfaces
(see figure 28 and text for explanation of these and other symbols).

distortion on cooling was likely to be small. However, although the radiation trap was
successfully made in pure copper, it was found impossible to make satisfactory apertures from
the same material. The aperture edges could not be made sufficiently sharp: a rounded profile
having a radius of curvature of between ten and twenty micrometres being obtained. It was
eventually decided to make them instead from Cu—1.8%Be (Be-Cu 250, Telcon Metals Ltd).
This can be precipitation hardened by heat treatment to a Vickers hardness number between
350 and 400, and has good machining and lapping properties.

The apertures were first machined in the soft state and then, after heat treatment, the conical
entry and the flat reference surfaces were lapped. The completed aperture was held in a specially
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constructed and hardened ‘Pitho-Steel’ jig having a precisely aligned central hole through
which a ‘Tufnol’ lap impregnated with diamond paste could be pushed. In this way it was
ensured that the edges of the apertures, although less than 100 pm wide, were precisely
cylindrical, having an axis normal to the front face. Photographs of the Cu—Be apertures taken
with a scanning electron microscope are shown in figure 21. After the final lapping of the lands,
the conical surfaces were coated with an evaporated layer of gold to enhance the reflectance.

The roundness of the apertures was measured with a ‘Talycenta’ (Rank Taylor-Hobson Ltd),
and from the traces produced by this instrument (figure 22), the positions of the minimum and
maximum diameters were identified. This information allowed the apertures to be positioned
on the NPL ‘Internal-Diameter Measuring Machine’ (manufactured by Quantum Science
Ltd) for these diameters to be measured.

FicUure 21. Representative views of the edges of the four apertures obtained by a scanning electron microscope.
In some views the silica spheres of the 3M black paint are visible.

The results of measurements of the diameter of the apertures together with associated
uncertainties are shown in table 5. Preliminary measurements showed that, as expected, the
dimensions of the apertures were unaffected by repeated cycling to liquid-helium temperatures.
It was also necessary to measure the distances Y;; and Y, on the upper and lower apertures,
respectively: these are the distances between the plane surfaces that define the front of the
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Ficure 22. The circularity of the apertures: ‘Talycenta’ trace for the 18 mm diameter lower apperture.

TABLE 5. THE DIMENSIONS OF THE APERTURES (IN MILLIMETRES) AT 293 K

(See figures 20 and 28.)

large pair of apertures

upper aperture

December 1980

2Ry (max) = 26.1014} _
2Ry (min) = 26.1008 2Ry(ave) = 26.1011
Yy = 214727, yy = 0.0012,

ty = 0.100

January 1983
2Ry(max) = 26.104
2Ry (min) = 26.1006
a = 0.0028

2R (ave) = 26.1010

lower aperture

2Ry (max) = 18.1538} ~
2Ry (min) = 18.1533 | 2Ru(ave) = 18.1536
Y, = 4.9629, y; = 0.0003,

t, = 0.055

2R (max) = 18.1537
2R, (min) = 18.1535
b =0.0070

} 2R, (ave) = 18.1536

small pair of apertures

upper aperture

February 1983

2R, (max) = 18.2469} _

2Ry (min) = 18.2467 | 2Ru(ave) = 18.2468
Yy = 21.3390, y = 0.0000,

ty = 0.046, a=0.0026

December 1983
2Ry (one measurement) = 18.2467

lower aperture

2Ry (max) = 10.2014} i
2Ry (min) = 10.2013 | 2Ru(ave) = 10.2014
Y, =4.9080, y;, = 0.0003,

t;, = 0.028, b =0.0042

2R; (one measurement) = 10.2010

Estimated uncertainties in the measurements are: for 2Ry and 2Ry, +0.0003 mm; for ¥;; and Y3, +0.0002 mm;
for y; and yy, +0.0003 mm; for ty; and ¢, +0.002 mm and for a and b, +0.0005 mm.
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apertures (A in figure 20) and the rear annular reference surfaces B, which are the locating
surfaces of the apertures with respect to the radiation trap. These were measured by using either
a ‘Tesa’ electronic indicator (Tesa S.A.) or a Trimos Vertical 500 (Trimos S.A.). These
distances are needed for the calculation of the overall distance between the apertures, which
we shall come to in §6.

Although the mean plane A of the front surface of the aperture is well defined, the final
lapping of the land resulted in a small distortion of the front face close to the edge. This is shown
in the insets of figure 20. These distortions were measured with a Hilger & Watts interference
microscope and hence the values of the small corrections y{; and y;, were deduced. A more
significant correction is due to small departures from flatness of the reference surfaces B of the
apertures. These departures from flatness were in the range 2-7 pm; they are referred to in
table 5 and figure 28 as a and b for the upper and lower apertures, respectively, and were
measured by a Talycenta.

Finally, each of the apertures was examined in a scanning electron microscope to ensure that
the edges were sharp and that there were no burrs. Photographs taken with the electron
microscope (shown in figure 21) allowed the widths of the lands (¢; and ¢, in figure 20) to
be deduced from a knowledge of the angle of view and magnification of the microscope.

After the final measurements of the distances Y and y had been made, the front faces A were
hand painted with 3M-C 101 black. Ideally, the surface A should be non-reflecting right up
to the aperture edge to reduce the contribution from specular reflections to the measured
radiant power. This was not possible, however, as the presence of paint at the aperture edge
renders its geometrical position somewhat indeterminate. The layer of paint, therefore,
extended to about 80 pm from the edge. The paint was applied by hand under an optical
microscope. The paint is visible in some of the electron microscope photographs of figure 21.
We show later that the remaining annular ring of reflecting Cu-Be makes a small but significant
contribution to the scattered radiation entering the calorimeter.

(b) Thermal expansion of Cu—Be

The thermal expansion of Cu—Be between liquid-helium temperature and room temperature
was not well known at the outset of this work. The eventual choice of Cu-Be in place of pure
copper was only made possible by an offer, by C. A. Swenson of Iowa State University, to
measure it for us. The results of this work by Holtz & Swenson (1983) showed that there is
a significant difference between the expansion coefficients of pure copper and Cu—Be and that,
further, the precipitation-hardened alloy differs significantly from the solution-heat-treated
alloy at temperatures below about 100 K. Similar results, although of somewhat lower
accuracy, but obtained by a novel technique, were subsequently obtained by Radcliffe ¢ al.
(1983).

The fractional change in linear dimension of precipitation-hardened Cu-Be,
[L(T)—L(293.15 K)]/L(293.15 K) for T < 20 K, was found by Holtz & Swenson to be
—3.071 x 1073, which is to be compared with the equivalent value of —3.257 x 1072 for pure
copper (Kroeger & Swenson 1977). These figures have been used in the calculation of g in §6.
Their uncertainty is estimated to be +0.19,, which implies an additional uncertainty in our
diameters at low temperatures of + 3 parts in 10®. This does not contribute significantly to the
overall uncertainty in g.
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(¢) Reflections at the aperture lands

The fraction of the radiant flux reaching the calorimeter that comes by reflection from the
edges (or lands) of the apertures is not negligible. Were the lands perfectly reflecting, the size
of this fraction would be of no consequence, but unfortunately this is not the case. Indeed, as
we shall see, at the high angles of incidence that occur for such reflections (= 77°) the
reflectance falls substantially below that at normal incidence and only recovers and then exceeds
its normal-incidence value at angles greater than 89.8°.

First of all, however, we ignore this variation of reflectance with angle of incidence and make
an approximate estimate of the magnitude of the fraction by using very simple angle-factor
algebra. Although providing only an approximate expression, it is nevertheless useful because
the expression is correct in the limit of small values of R}, /D and Ry /D (where D is the distance
between the apertures) and is thus a useful check on the more complex calculation that is made
later.

From angle-factor algebra we know that the fraction f; _y of the radiation leaving a uniform,
lambertian circular disc of radius Ry, which reaches a second disc of radius Ry; a distance D
from the first disc and coaxial with it, is given by

R
Jrv = DA R+ R

This expression is a sufficiently good approximation when Ry, and Ry < D. The exact

expression is given in (81) in §6 (c), which deals with the optical properties of the radiation

(57)

trap. If the second disc is displaced along the common axis by an amount 8Dy;, we can write

vy _ 2DR}; 58
5Dy, (DR AR (58)
D3dD
and hence Sy _ 2D8Dy__ —28DU. (59)

fiv  D+Ry+RL” D

This expression gives approximately the fraction of the radiation passing through the upper
aperture after reflection from the land of the upper aperture. Similarly, the fraction of the
radiation passing through the upper after reflection from the land of the lower aperture is
given by 28D;/D. For the large pair of apertures we find that 8Dy (= t;) = 55 pm,
8Dy(=ty) =100 pm and D = 100 mm; so that the sum of the two estimated fractions
calculated in this way is 0.3 %,. For the correction due to absorption at the lands to be less than
0.01 9, we thus require that the absorptance at the lands be less than about 0.03. Since this
is about the absorptance of many metals in the infrared, it is clear that a much more careful
evaluation of this correction is required. To do this we first estimate the absorptance (equal
to one minus the reflectance) of Cu-Be over a range of wavelengths and at high angles of
incidence at temperatures near 4 K, and we then make a more exact calculation of the fractions
given approximately by 26D/D.

(d) Low-temperature reflectance of Cu—Be

We do not know of any measurements of the reflectance of Cu—Be at low temperatures and
at high angles of incidence (= 77°). The sole experimental measurements (see table 6) of the
reflectance of Cu-Be in the infrared, of which we are aware, were made at room temperature
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TABLE 6. THE NORMAL SPECTRAL REFLECTANCE AND RESISTIVITY OF Cu—Be

(The normal spectral reflectance of Cu-Be: (a) measured values of Holmes et al. (1973); () corrected values
taken to apply to our Cu-Be following measurement by Freeman (1983).)

reflectance
A/pm (a) (b)
1 0.943 0.940
5 0.974 0.970
10 0.979 0.976
15 0.982 0.979
20 0.983 0.980
resistivity

resistivity /pu€2 cm

T/K hard! soft?
293 6.462 9.337
77 4.34 6.705
4.2 4.016 6.705

(1) Annealed for 2 h at 330 °C (precipitation hardened).
(2) Annealed for 1 h at 800 °C (beryllium in solid solution).

and cover the wavelength range from 1 to 20 pm (Holmes et al. 19773). Nevertheless, it is possible
to make an estimate of the low-temperature reflectance of Cu—Be on the basis of these
measurements and the following information: our measurements of the d.c. resistivity of Cu—Be
at 293, 77 and 4.2 K (also given in table 6); the theory of the optical properties of metals and
alloys (see, for example, Sievers 1978); the experimental values of the low-temperature
reflectance and d.c. resistivity of certain aluminium alloys (Tsujimoto et al. 19824) and
measurements made for us of the room-temperature reflectance at normal and high angles of
incidence of Cu-Be and pure copper (Freeman, personal communication 1983).

At wavelengths of concern to us, namely those between about 2 and 400 pm, the frequency
w of the radiation is very much less than the plasma frequency and so we can consider the
interaction of the electromagnetic radiation with the metal in terms of its surface impedance
Z, which is a complex quantity and a function of frequency, and which we can write as
Z = R+iX. If Z; is the impedance of free space, the normal reflectance of the metal is given
by (Sievers 1978)

_(1=Z/Z,\
p(0) = (m) (60)
and the normal absorptance by
4(R/Z,)
0) =1-p(0) = .

o (0) p( ) (1+R/Zo)2+(X/Z0)2 (61)

Since we know that R/Z, and X/Z, < 1, the normal absorptance becomes simply
a(0) ~ 4R/Z,,. (62)

Now, the calculation of R/ Z,, is difficult because R depends upon the details of the interaction
of the electromagnetic radiation with the metal. However, we have enough other information
available for us to be able to make a reasonable estimate of the value of a(0), and hence of
4R/Z,, at low temperatures. We make this estimate in the following way.

The room-temperature normal reflectance data of Cu-Be given by Holmes ¢t al. (1973),

9 Vol. 316. A
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shown in table 6, are for a highly polished mirror surface. The surface of our Cu-Be at the
aperture lands is certainly less well polished than this and would have a higher surface
impedance and hence a higher absorptivity. Evidence for this is given by measurements made
for us by Freeman (personal communication 1983). He measured at room temperature the ratio
of the reflectance of a sample of highly polished copper to that of a sample of our Cu-Be, at
normal and 76° incidence, at a wavelength of about 25 pm. At normal incidence the ratio was
found to be 1.0077+0.0010 compared with the value of 1.00540.001 based upon the results
of Holmes ¢t al. (1973). We have, therefore, made the appropriate correction to their results
and taken the corrected values to apply to our Cu-Be. They are given in table 6 and
figure 23. This figure also shows the normal spectral reflectance of an aluminium alloy, from
Tsujimoto et al. (1982a), which has electrical resistivities at room-temperature and liquid-
helium temperatures very close to those of Cu-Be (see table 6).

107!
5
S
3
1072 ] el 1 L1
10° 10* s
A/um
FicurE 23. The spectral normal absorptance, a(0), of Cu-Be, at 293 K: +, Holmes et al. (1973);
0, an aluminium alloy at 306 K; @, 16 K; ——, calculations of Tsujimoto ¢t al. (19824, b).

The room-temperature normal spectral reflectance and the temperature dependence of the
electrical resistivity of both the aluminium alloy studied by Tsujimoto ¢t al. (19824) and our
samples of Cu—Be are very similar. We have therefore assumed that the temperature dependence
of the normal spectral reflectance of Cu-Be is similar to that of their aluminium alloy.
Figure 24 shows the low-temperature normal spectral reflectance of our Cu—Be alloy deduced
on this basis together with our estimate of the uncertainty.

Remembering that the normal absorptance is given by 4R/Z,, we can obtain the absorptance
at high angles of incidence by making use of the Fresnel relations, which lead to

(4R/Z,) cos b

- cos?2 6+ (2R/Zo> cos 0+ (R2+X2)/Z§ (63)

&(0) = a(0)
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107!

[

102 -
10° s 10

A/pm

Ficure 24. Estimated spectral normal absorptance of our Cu-Be at liquid-helium temperatures. The broken
lines indicate the estimated uncertainty.

_ _ (4R/Z,) cosO
and €0) = 2.0) = T BRI Z) cos 0’ (64)

where ¢(0) and o () are the emissivity and absorptivity, respectively, for linearly polarized
radiation having the plane of vibration of the electric vector parallel to the plane of incidence,
and €, (0) and a | (0) are the same, but for the plane of vibration normal to the plane of incidence,
all at an angle of 6 to the normal.

Also,
€(0) = 3[¢,(0) +€,(0)] (unpolarized) (65)

and the maximum absorptance occurs at an angle of incidence 6, given by 6, = arccos (2R/Z,).

Using values of R/ Z, deduced from the values of 2(0) given in figure 24, we can now calculate
the absorptance and reflectance for high angles of incidence. Figure 25 shows the calculated
reflectance of Cu-Be at low temperatures and for angles of incidence greater than 77°, for a
wavelength of about 20 um. For the aperture geometries in question, the angle of incidence
for land reflections lies within the range shown in the figure.

By using (63) and (64), the ratio of the spectral reflectances of Cu—Be and pure copper have
been calculated for an angle of incidence of 76°. For Cu-Be, the normal spectral absorptance
was taken from table 6 column (b), for a wavelength of 20 pm. For pure copper the value was
deduced from the measurements of Holmes e al. (1973). The calculated ratio of reflectances
was 0.968. This is in good agreement with the value of 0.967 +0.001 measured by Freeman
(personal communication 1983) at the same angle of incidence. Although not a fully
independent result, it nevertheless gives further support to the small adjustment we have made
to the measured values of Holmes ¢t al.

(¢) Land reflections ; a more detailed treatment

Having made an estimate of the likely reflectance of the lands as a function of angle and
wavelength, we now come to the more detailed analysis of the reflection losses at the lands.
We take first the thermal radiation from the black body that reaches the upper aperture after

9-2
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10 7 ' ; T T T t r - r T T
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angle of incidence/deg

Ficure 25. The reflectance of Cu-Be, for the components polarized normal, p,, and parallel, p|, to the surface,
as a function of angle of incidence at a wavelength of 20 um, calculated by using (63) and (64) with
R/Z, = 0.005.

a specular reflection at the land of the lower aperture. The geometry of the calculation is shown
in figure 26 a. The width of the land is ¢, the distance between the apertures D, and their radii
R;, and Ry; for the purposes of the calculation we take ¢t < Ry, and Ry & Ry ~ 0.1D. From
the figure, we can write down an expression for the radiant flux dJy, reaching an element d$
in the upper aperture and reflected from an element dL on the land, having a projected area
dA in the direction of dS, which is irradiated by radiation of radiance J(7') from the radiator:

ds
dyrd D
= J(T) RLthL(l—)?—cl-c_%coswn(cD;ﬁ+;) (D2+02)% cx(ﬁ) (67)
t; DR c?
=J(T)x - L D+ ) a(0)d¥ cosy dyr de, (68)

where a(0) is the absorptance of the land given by the sum of equations (63) and (64). By
writing (2R/Z,) = B so that B = {a(0) and assuming that (R/Z,)? and (X/Z;)? <1, the
absorptance

a(6) = 2B cos O [(cos?0+2B cos @+ B*) "'+ (1+2B cos ) '] (69)

in which cos O = ¢(D?+ %)% cos . (70)

The variation of a(0) with wavelength is shown in figure 24.
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Ficure 26. The geometry used in the derivation of the expressions for absorption at the aperture lands
(equation (66) etc.).

The radiant flux incident over the whole of the upper aperture coming from the whole of

the land on the lower aperture is thus
Jy = J(T) r" 2k, L aw [T cosypay [* ol
v weo T ¥=0 =0 (D*+c%)?

where ¢, = Ry, cosy+ (R}, cos® yy — R} + R%): (72)

2

6) dc, (71)
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By integrating with respect to ¥ this leads to

in

Jy, =4J(T) Ry, t, D - ocoswdlﬁJ. D)

+c2) a(6) de. (73)
The fraction Fj, of the total radiant flux passing from the lower aperture through the upper
that comes after reflection from the lower land is thus given by

Iy, = Ju/I(T) gl (74)

where g is the geometrical throughput given by (81) and the ratio J; /J(T) may be found from
(73).

We come now to the radiant flux that comes from the lower aperture and strikes the land
of the upper aperture. This is of course identical to the radiant flux that would come from the
annulus of the upper aperture through the lower aperture if the direction of the radiation were
reversed, and it is in this way that we calculate it. The geometry for the calculation is shown
in figure 26 6. The calculation is similar to that for Fj, except that the limits of integration are
different.

As before, we write down an expression for the flux dJy; reaching an element d§ in the lower
aperture from an element dU on the land of the upper aperture:

D 2
dJU=J(T)RUd‘I’tUn (ch sy cos ¥ dy dea(6), (75)
but now
R.. ¢t D 2n P
Jy = 2J(T) 22— d!PU d f
o=2() R [ | [ oy [ i) a

_Locoswdw D (0)dc], (76)

where P = arcsin (Ry,/Ry;) and
¢, =Ry cosyy+ (R cos?yy —R, +R}): and ¢, = Ry cosy — (R} cos?yy —RY + RY)E. (77)

The fraction Fy; of the total radiant flux passing from the upper aperture through the lower
that comes after reflection from the upper land is

Iy = Ju/lJ(T) gl (78)

where the ratio Jy;/J(T) may be evaluated by using (76). This is identical to the fraction we
require, namely the fraction of radiation from the lower aperture passing through the upper
aperture that strikes the upper land.

Equations (74) for Fj, and (78) for Fy; are more exact expressions than the one derived at
the beginning of this section (equation (59)); but setting «(6) = 1 we find that numerical
evaluation leads to values of Fy; and Fj, which, in the limit of large D/Ry or D/Ry, are
asymptotically approached by the value given by (59). These expressions for the fractions Fy,
and Fy; do not take into account the variation of a () with wavelength shown in figure 24 for
normal incidence. To do this it is necessary to convolute these expressions with the Planck
distribution J(A, T'). We wish to obtain the fraction of the radiation from the black body at
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temperature 7" that is lost due to absorption at the lands. This fraction, {F,(A, T') + Fy(A, T)},
which we subsequently refer to as L(T), is given by

L(T) = [ J:O F,JQA, T)dA+ f:o FyJQA, T) d/\] / f:o J(A, T)dA (79)

in which F}, and Fy; are given by (74) and (78). Numerical integration of these expressions leads
to results shown in table 7.

TABLE 7. FRACTIONAL LOSSES DUE TO ABSORPTION AT THE APERTURE LANDS

large-aperture pair (t;, = 55 pm, ty = 100 pm)

T/K 10* F,(AT) 10* Fy(AT) 104 L(T)

233 0.98+0.08 1.33+0.11 2.3140.19
273 1.02+0.09 1.39+0.12 2.4140.21
373 1.1140.11 1.5340.14 2.64+0.25

small-aperture pair (¢;, = 28 um, ty = 46 um)

233 0.82+0.06 0.8710.07 1.69+0.07
273 0.86 +0.07 0.92+0.08 1.78+0.15
373 0.93+0.10 1.01+0.10 1.94+40.20

The values of L(T') given in table 7 are shown in figure 27 as a function of temperature.
The uncertainties shown in the table, and by the broken lines in figure 27, are obtained by
re-evaluating (74) and (78) for the upper and lower estimates of a(0), shown by the broken
lines in figure 24. Since the uncertainties in £}, and Fy; are strongly correlated, the uncertainty
in L(T) is the arithmetic sum of the uncertainties in F}, and Fy;.

30 T T T
2.5 .
= L i
2 5 i
=
20 _
- .
15—L | | l
233 273 323 373

radiator temperature/K

Ficurk 27. The fractional corrections, to be added to the measured radiant energies, due to absorption at the aperture
lands, (a) for the large pair of apertures and (b) for the small pair. The broken lines show uncertainties stemming
from the uncertainties in a(0) (cf. figure 24).
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6. THE RADIATION TRAP AND SHUTTER
(a) The construction of the radiation trap

The radiation trap and shutter assembly are shown in figure 12. The function of the radiation
trap is twofold: first it must absorb the radiation passing through the lower aperture that is
not in the direct beam to the upper aperture, and second it must act as the support for the
apertures and define the distance between them. Both of these functions are crucial to the success
of the measurements.

The radiation trap (see figure 28) is made from o.f.h.c. copper and constructed in the form
of an open drum to which is bolted a lower circular copper plate. Various surfaces are lapped,
indicated by heavy lines in the figure, and are designed to act as reference surfaces during the
assembly and measurement procedure. The inside of the radiation trap is lined with baffle plates
having multiple V-grooves on the inside faces. These baffle plates are also made from o.fh.c.
copper and have copper strips soldered between the V-grooves, as shown in figure 12, and also
figure D 1 in Appendix D. The edges of these copper strips were honed to a fine edge before
the V-grooves and strips were painted with 3M-C 101 black. After baking and before assembly
in the radiation trap, the painted edges of the copper strips were filed to a sharp edge to reduce
scattering of radiation to a minimum. This was an important operation because scattering from
the edges of strips is, as we shall see, one of the sources of scattered radiation entering the
calorimeter. It was also a very time-consuming operation since there are some 230 individual
strips, giving a total length of more than 16 m of edge to be sharpened!

___.r.___ [ , o

Yo

X, D X

B
Al bl yl,l \ Y
F_lm&
E j 22
Ficure 28. The body of the radiation trap showing the reference surfaces (in heavy lines), which allow precise
mechanical measurements to be made. During measurements of its dimensions the radiation trap is supported

as shown on a flat measuring table. The positions of the baffle plates that cover all the inside surfaces of the
radiation trap are shown in figure 12. The lettering is explained in the text.

-
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About 98 9, of the radiation entering the radiation trap from the radiator through the lower
aperture is absorbed by the baffle plates. It is necessary to keep the consequent temperature
rise as small as possible. The change in direct radiation emitted by the radiation trap and
passing into the calorimeter on opening and closing the shutter is proportional to the difference
between the fourth powers of the radiation-trap temperatures with shutter open and closed.
The baffle plates and lower plate are firmly bolted together with brass bolts and ‘schorr’
washers.

(b) The measurement of the radiation trap

The radiation trap not only supports the apertures, but must also allow the distance between
them to be measured to within a few parts in 10°. Figure 28 shows schematically how the
radiation trap was designed to allow this to be done. The lapped reference surfaces are flat
and parallel to within a few micrometres. If the required distance between the apertures is D,

we find that D = X—[(Yy—yu) —fe] — [B+}+ (Y —y1)). (80)
Tables 8 and 9 show the results of all the measurements of these quantities made in 1980
and 1983, that is just before and just after the principal series of measurements of o and 7.

The values are given at 293 K and also, after correction for thermal contraction, at liquid-helium
temperatures.

TABLE 8. DIMENSIONS OF THE RADIATION TRAP AND APERTURES (MILLIMETRES)

large pair of apertures

December 1980® January 1983®
T =293 K© T~ 4K® T =293 K© T~ 4K®
xX® * 142.8186 142.3534 142.8225 142.3573
Yo—yu *k 21.4715 21.4056 — —
la — 0.0014 0.0014 — —
B * 16.4003 16.3469 16.4000 16.3466
.-y * ok 4.9626 4.9474 — —
1 — 0.0035 0.0035 — —
Ry *x 13.0506 13.0104 13.0505 13.0104
Ry, ** 9.0768 9.0489 9.0768 9.0489
D — — 99.6515 — 99.6557
small pair of apertures
February 1983® December 1983®
X® * 142.8225 142.3573 142.8220 142.3568
Yo—yyu ¥ 21.339 21.2735 — —
1a — 0.0013 0.0013 — —
B * 16.4000 16.3466 — —
Y.—yL ** 4.9077 4.8926 — —
16 — 0.0021 0.0021 — —
Ry ** 9.1234 9.0953 9.1234 9.0953
Ry, ** 5.1007 5.0850 5.1005 5.0848
D — — 99.8439 — 99.8434

® TJust before measurements began.

® Just after measurements ended.

© In this column are given the measured values at 7 = 293 K.

@ Tn this column are given the values after correction for thermal contraction from 293 to 4 K.
* Correction for o.f.h.c. copper = —3257 x 1078,

** Correction for Cu-Be = —3071 x 107,

© Measurements of the dimension X were also made in 1976 and 1977 (see table 9).
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TABLE 9. THE DIMENSIONS X AND B OF THE RADIATION TRAP (MILLIMETRES)

(Uncertainties in the measurements for X and B are +0.0002.)

X B
February 1976 142.8173 —
October 1977 142.8192 —
December 1980 142.8186 16.4003
January 1983 142.8225 16.4000
December 1983 142.8220 —

Dimensions Yy, yy, a, b, ¥, and y;, come from the aperture measurements already given in
table 5. Dimensions X and B are derived from measurements of the radiation trap and the lower
plate. Various measuring instruments and techniques were used, but chiefly the Tesa Electronic
Indicator and the Trimos Vertical 500. Distance B is measured before the apertures are bolted
in place and distances X and X, after the lower plate has been bolted to the drum. Distance
X, is used only as a check to show that the lower plate has been bolted in place without trapping
dust between the reference surfaces. Distance X is measured with the radiation trap supported,
as shown in the figure, with the weight being taken at the outer edge by end gauges resting
on a steel measuring table. The deflections in the radiation trap are then similar to those present
when the radiation trap is mounted in the cryostat, where the weight is also taken around the
outer lower reference surface. The reproducibility of dimension X over the short term, after
bolting and unbolting the lower plate from the drum, was found to be about 2 pm. However,
a long-term change was detected between measurements in 1980 and 1983. The change in X
amounted to 4 pm, equivalent to a change in g of 6 parts in 105. In the absence of any firm
indication as to when this change took place, we have taken the average of the measurements
made in 1980 and 1983 and have associated with it an uncertainty of + 3 parts in 10°.

(¢) The throughput ‘g’
According to geometrical optics, the fraction f of radiation diffusely emitted by an aperture

of radius Ry, that is intercepted by a second, coaxial, parallel aperture of radius Ry; a distance
D from the first, is given by

f=2R:{R% +R: + D>+ [ (R, + RE + D*)2— 4R% R2 |11, (81)

This formula is exact and is one of the classical formulas of photometry. In the present case,
radiant power passing through the upper aperture when the lower aperture is irradiated by
a black body at a temperature T is therefore

M'(T) = RS, foT* (82)
=goT" (83)

From the measured values of Ry, Ry, and D corrected for thermal contraction, given in
table 8, we deduce the following values for g:

£=0.0427714+40.0000038 (large pair of apertures),

£ = 0.00666838+0.00000107 (small pair of apertures).
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(d) Scattering of thermal radiation in the radiation trap

The second function of the radiation trap is to absorb all the radiation emerging from the
lower aperture except the small fraction f that is in the direct beam passing through the upper
aperture, namely 1.7 %, for the large pair and 0.859, for the small pair of apertures. For our
measurement of the Stefan—Boltzmann constant, we require that less than 1 part in 10* of the
measured radiation has been scattered in the radiation trap.

There are six ways in which significant fractions of radiant flux might be reflected inside
the radiation trap and hence reach the upper aperture. These are illustrated in figure 29 and
are denoted by fractions F,—F;. To evaluate these fractions it is necessary to calculate the
geometrical angle factors for reflection between the various components of the radiation trap
and also the diffuse reflectances of each of the surfaces in question. The contribution due to
specular reflection is considered at the end of this section.

F, F,
U A
D
S _——
< ¥ Y
A O
L %

Ficure 29. The principal ways in which radiation may be scattered in the radiation trap. The fractions F;—F;
are specified in (84)—(89) and the lettering is explained in the text.

Taking the fractions F,—F; in turn we can write down expressions for each of them in terms
of the fractions of radiation leaving the lower aperture that are intercepted by the top plate
U, the side walls S and the lower plate L. Denoting the lower aperture by A1 and the upper

by A2, B = Fy s B a2 p(A1,S,A2), (84)

where F,, ¢ is the fraction of radiation leaving A1 that is intercepted by the side walls S, Fg_,,
is the fraction of the radiation leaving the side walls that passes directly through A2 and
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p(A1,S,A2) is the diffuse reflectance of S for radiation coming from A1l and leaving in the
direction of A2. Similarly, expressions for the fractions F,—F, can be written down:

F,=Fy, v Py Fra.p(ALU,L) p(U, L, A2), (85)
F,=Fy vl sFs a2 p(ALU,S) p(U, S, A2), (86)
Fy=Fyy s Fs L Fi a2 p(ALS,L) p(S, L, A2). (87)

The remaining two fractions are evaluated a little differently from the first four because they
concern the scattering from the edges of the internal baffles, S’, the specular reflection from
the annular unpainted rings A2’, surrounding the apertures:

Fs = FAl—S’ FS’—A2 p(Al, S/’A2)> (88)
By = Fuy as Fag 1 Froas p(AL, A2, 1Y) p(A2, 1V, A2), (89)

where L’ represents the flat painted surround to the lower aperture (see figure 29).

We require that 6
> F/f<107 (90)
i=1

The angle factors and reflectances of (84) to (89), which are individually evaluated in Appendix
D, are shown in table 10.

TABLE 10. CALCULATED VALUES FOR ANGLE FACTORS AND REFLECTANCES WITH PERCENTAGE
UNCERTAINTY WHERE APPROPRIATE

(The values in this table are calculated from the relations given in Appendix D.)

angle factors

large apertures small apertures
Far v 0.41 0.41
Fy g 0.59 0.59
Fyy, 0.32 0.32
Fys 0.68 0.68
Fo g 6x1073 (+309%,) 6x107% (+30%,)
Fy a0 5x1073 2.4x1073
Fyyas 2.4x107% (+209%,) 4.8x107* (£209%,)
F ,, 5x1073 2.5%x1072
F, ae 8x1073 4x1073
Ky, 0.28 0.28
K pe 0.017 8.5x107®
Foy 1 1 1

0.017 8.5x 1078

reflectances
Ps =0.057 (£109%,)

AL S S, A2) =27x107% (+20%)
A1,U,L) =0.013 (+10%)
S,L,A2) =27x107% (£20%)
L,A2) = 0.057 (+10%)

AL, S, A2) =6x 1074 (+109,)
U,L,A2) =p(L,U,L)=0.013 (+10%)
U,S,A2) =0.006 (+10%)
ALU,S) =8x107° (+20%)
AL,S,L) =0.014 (+10%)
AI-AL) =1

A2,L’, A2)= 0.057 (+10%)

Py =0.026 (+109,)

—
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Table 11 shows the values obtained for the fractions F,—F; for the large pair of apertures
together with their final sum from the data of table 10. The same value is obtained for the
small pair of apertures. The overall correction that has to be made is thus —0.75 x 107 of the
measured value of M’(T) for both the large pair and the small pair of apertures.

TaBLE 11. THE SCATTERING FRAGTIONS FOR THE LARGE PAIR OF APERTURES

F=(8+2)x1077
F,= (240.4) x 10~
F, = (0.5+0.15) x 1077
F, is negligible
F, = (0.2+0.06* and +0.02) x 1077
F,= (2+0.4* and +0.2) x 10~

5 F, = (12.7+2.8) x 10~

=1

and hence

)y F/f = (0.75+0.20) x 10~

i=1

* These uncertainties are uncorrelated with each other and with each of the other uncertainties.

The uncertainty in this correction for scattering comes from the uncertainty in the reflectance
of the paint, p, which we have already estimated as 0.006 or 10 %, of its value, together with
the uncertainties resulting from the approximations made in the calculation of the angle factors
and reflectances of the walls. The uncertainties in the calculation of most of the angle factors
are small and can be ignored because they stem from simple geometrical factors. This is not
the case, however, for Fy, g, the fraction of radiant flux intercepted by the edges of the baffles,
since it depends upon our evaluation of the width of the edges. We estimate the uncertainty
in Fy, ¢ to be 309, of its value. The remaining uncertainties are those coming from our
evaluation of the reflectances, and these are given in table 10.

In table 11 the two uncertainties marked with an asterisk are uncorrelated with each other
and with each of the other uncertainties, whereas all of the others are strongly correlated because
they are mainly due to the uncertainty in the value of p. These uncertainties are combined
as follows: all of the correlated uncertainties are added linearly in proportion to the magnitude
of the value of F concerned. This gives a total of +2.7x 1077, which is then combined in
quadrature with the two uncorrelated uncertainties of F; and F;, +1.4 X 1077, to give a final
uncertainty of 2.8 X 1077. We thus arrive at the final uncertainty in the scattering correction
of +0.2 x 1074, which is given in the table.

The contribution from the specular reflections, which occur at long wavelengths, is
insignificant. The average weighted specular reflectance for 273 K thermal radiation is, as we
have seen, of the order of 5 x 107%. So, provided at least two reflections take place the fraction
ultimately reflected is negligible, and this is the case.

In addition to the effect of scattered radiation entering the calorimeter, it is necessary to
measure and correct for the change in temperature of the radiation trap. Although its
temperature is very low, the thermal radiation emitted by the radiation trap and entering
the calorimeter can be as much as three parts in 10° of the measured radiant energy from the
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radiator. Since its temperature changes by about 0.5 K on opening or closing the shutter, the
change in energy emitted by the radiation trap 3AM’(T) is significant and must be corrected
for. Three germanium resistance thermometers are mounted inside the radiation trap, in the
top, side and bottom baffle plates. The readings of these three thermometers allow a mean
change in temperature to be deduced from which the small correction M’(T) can be
calculated.

(e) The shutter

The shutter is shown in figure 12. Thermal contact between the shutter and the radiation
trap is provided by eight copper braids. These were made sufficiently flexible to allow the
shutter to move a distance of 5 cm between the open and closed positions. The shutter slides
on chromium-plated copper rods mounted on the underside of the copper flange supporting
the radiation trap. The shutter is drawn back and forth by 0.5 mm diameter braided
stainless-steel wires. These are attached to pulleys at room temperature, which are turned from
the outside through ultra-high vacuum flexible bellows. It takes about one second to open or
close the shutter. The underside of the shutter is gold plated to reduce heat absorption from
the radiator when it is closed. Its temperature is monitored with a germanium resistance
thermometer and varies from about 10 K, when the radiator is at 233 K, to 20 K when the
radiator is at 373 K ; despite these relatively high temperatures, the radiant power entering the
calorimeter from the closed shutter is always less than 1 nW and is thus negligible.

It was occasionally observed that the temperature of the shutter, when closed, was higher
than usual, which led to unusually high temperatures being observed in the radiation trap.
It was finally concluded that this behaviour was due to the build-up of cryodeposits on the
underside of the shutter giving it a much higher absorptance than when clean. One of the odd
effects of this was that during measurements made under these conditions the temperature of
the radiation trap was higher when the shutter was closed than when it was open, the opposite
of what was expected and what was generally observed. However, provided that the
appropriate corrections for the radiation-trap temperature were made (8M’(7T') of table 16),
no difference could be detected in the results with or without a cryodeposit present on the
shutter.

7. THE EVALUATION OF THE DIFFRACTION LOSSES

Having taken all possible steps to avoid diffraction losses, it remains necessary to make an
estimate of the residual effects of diffraction that result from our failure to reproduce exactly
the ideal conditions of figure 2. This we have done by using the expressions derived by Blevin
(1970) for diffraction at a circular aperture. He showed that, to a good approximation, the
fractional loss F in irradiance at a point A, on the axis of an optical system when irradiated
through a circular aperture of radius Ry, a distance D from A,, by a circular source of radius
r, situated at a distance b from the aperture, where r, = Ry, (D+b)/D, is given by

F= (—’E)é H() +—— (91)
“\u ) T(u+v,)’
__ 2nR} D+b _ 2mRy 1, Uy
where == Dp> "= t= ()}
and

H(t) = 2n~1[3—8(4y)] cosjmtg—2n ™1 [3— C(4,)] singnsg —H[3— C(8)1* + [5—5(%) 1%, (92)
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where C(¢,) and S(¢,) are the Fresnel integrals defined by

t

to o
0 =f cosnr>d7 and S(f) = f sinn7? d7. (93)

0 0
Diffraction effects are, of course, wavelength dependent but, for thermal radiation, Blevin
(19770) showed that the effects can be evaluated using an effective wavelength A, given by

0.333 < A, T/c, < 0.37, (94)

where ¢, = 0.014388 m K and we take 0.333 for « & v, and 0.37 for u < v,. Since in our case we
find that u covers a range of values from close to v, to very much less than v, we take the average
and calculate an effective wavelength by using

Ao =0.35¢,/T. (95)

Between 233 and 373 K, A, varies between 21.6 and 13.5 pm.

Although Blevin’s (1970) expression for F is calculated for a point on the axis, it is unlikely
that F is significantly different at other points over the surface of the top aperture since the
angular displacements from the axis are small. We assume, therefore, that the diffraction losses
calculated for the point at the centre of the aperture are representative of those over the whole
of the aperture.

Figure 30 shows a scale drawing of sections of the aperture system, in which the upper half
of the figure is drawn for the small pair of apertures and the lower half for the large pair. The
irradiance at the point A; would be that calculated according to geometrical optics if all of
the inner surfaces of the gold-plated mirror, the shutter, the base of the radiator and the lower
aperture were perfect reflectors of the thermal radiation coming from the radiator. Since this
is not the case, we must first calculate the fraction of the radiant flux reaching A, that would
come from each of these surfaces in the perfectly reflecting case, and then make an estimate
of their reflectance.

The fraction of the radiant flux reaching A, that comes from outside the geometrical beam
is the fraction of flux coming from outside ray 1, which we call F,. The fraction of radiant flux
coming from outside ray 2 is F, and so on. Thus, the fraction of radiant flux coming from
the gold-plated mirror is F, — F;, and by grazing incidence from the conical inner surface of the
aperture is Fy. For the small pair of apertures the fraction coming from the inner edges of the
shutter is /;—F; . Similarly, F, is the fraction of the radiant flux passing through the upper
aperture that is diffracted so that it subsequently passes at grazing incidence into the
calorimeter. Each of these fractions has been evaluated by using (91) and (92). The results are
shown in table 12.

Having calculated the fractions of the diffracted radiation coming (in the ideal case) from
each of the surfaces of the mirror system, we must now estimate the departure from perfect
reflection for each fraction, and hence deduce the diffraction losses.

The largest fraction is that coming from the upper regions of the radiator from just outside
the geometrical beam. These fractions amount to 2.2 9, and 4.1 9%, for the large and small pairs
of apertures, respectively. For there to be no error in the radiant flux entering the calorimeter
greater than 1 part in 10%, we require the mean temperature of these upper regions of the
radiator, just outside the geometrical beam, not to differ from the effective radiator temperature
by more than 31 mK (at 273 K) or 42 mK (at 373 K) for the large apertures and 17 mK (at
273 K) and 22 mK (at 373 K) for the small pair of apertures. As was demonstrated in §2, these
requirements were met at all times during the measurements.



148 T.J.QUINN AND J.E. MARTIN

N
D .
T
—— J— 7
s ‘
Ay — I — p
- 3 '
@ - — 1
- >
g upper / Yz 2> ~—am
aperture lower . 9!
aperture
base of /
radiation trap tgP of
PR radiator
shutter cyllx}drlcal
mirror
L D=10cm |

Ficure 30. Sketch showing the principal components of diffracted radiation coming from outside the geometrical
beam of radiation. The upper part of the sketch refers to the small pair of apertures and the lower part to the
large pair, m; and mg represent the marginal rays for the large and small aperture pairs, respectively, and the
numbers are explained in the text. Broken lines indicate positions of the shutter and rays reflected from the
shutter during measurements of diffraction effects.

TABLE 12. FRACTIONS OF MEASURED RADIANT FLUX DUE TO DIFFRACTION

large pair of apertures (A = 18.4 um)

F,=23x1072
F,=84x10"*
FE,=35x10"
F,=36x10"*
fraction from top of radiator, F—F=22x10"% -
fraction from cylindrical mirror, F,—F,=49x10"*

fraction by grazing incidence at lower aperture, F, = 3.5 x 107*
fraction by grazing incidence at upper aperture, F, = 3.6 x 107*

small pair of apertures

F=42x10"*
F,=10.5x10"*
F,=47x10"
F, =3.6x10™*
F,=33x10™
fraction from top of radiator, F—F=41x107?
fraction from cylindrical mirror, F,—F,=58x10"*
fraction from inner edge of shutter and base of radiation trap, F;—F;, = 1.1 x 1074
fraction by grazing incidence at lower aperture, F, =36x10™

fraction by grazing incidence at upper aperture, F,=33x10
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The fractions coming by reflection from the gold-plated tubular mirror, 4.9 x 10™% and
5.8 x 107 for the large- and small-aperture pair respectively, are unlikely to be deficient. Not
only is the mirror surface of polished gold, but being at the temperature of the radiator (within
1 K at least) any absorption will be compensated for by radiation of the correct temperature.
We do not therefore consider any error from this source.

For the large pair of apertures there remains a fraction of 3.5 x 1074, which comes by grazing
incidence at the conical surface of the aperture. This surface is gold-plated, but the quality of
the polish of the Cu-Be substrate was not as high as we had hoped. In addition, since the
apertures are at liquid-helium temperatures, layers of adsorbed gas may be expected on these
conical surfaces. Tsujimoto et al. (1982 5) have recently shown that the adsorptivity of adsorbed
water films on cold surfaces rises very rapidly with film thickness. To investigate the reflectance
of the cold surfaces close to the apertures and also to check the predictions of the diffraction
calculations, the following measurements were made. We observed the radiant power entering
the calorimeter while at the same time moving the shutter in incremental steps of about 1 mm
from its fully open position to the positions shown by broken lines in figure 30. These final
positions were chosen for each pair of apertures to bring the inner edge of the shutter close
to the outer marginal rays of the geometric beam. The fraction of the diffracted radiation
interrupted at the successive positions of the shutter was calculated by evaluating, by using
(91), the diffracted radiation in each of the annular zones, and calculating the fraction of each
annular zone obscured as the position of the shutter changed.

For the large pair of apertures, it is predicted that at the maximum movement of the shutter
24 9, of diffracted radiation outside a radius of 1.8 cm should be obscured. If this fraction of
the diffracted radiation were to be lost it should lead to a fractional decrease in the measured
radiant power of 1.2 X 107%; in fact we observed a decrease of only (0.7 +0.3) x 104 However,
because of the geometry of the shutter and the large aperture (see the dotted path of ray 3’
in figure 30), we would not expect to observe any decrease in measured power had the surfaces
of the shutter and base of the radiation trap been perfectly reflecting. The fact that we observed
a fractional decrease in measured power of (0.74+0.3) X 107* allows us to deduce that the
average reflectance of each of these three surfaces, for a ray such as 3’, was only 0.7540.12.
Such a low reflectance for pure copper or gold-plated Cu-Be is not likely, but in view of the
exposed position of these surfaces it is highly probable that they were covered with thin films
of condensed water vapour or other condensed gases. An adsorbed water deposit having an
absorptance of 0.25 for thermal radiation of 273 K requires, according to the measurements
of Tsujimoto et al. (19825), a thickness of the order of only a few micrometres.

Further evidence in support of this hypothesis was obtained from the results of similar
measurements and calculations made for the small pair of apertures, for which a total movement
of the shutter of 15 mm was calculated to lead to a fractional decrease in observed radiant power
of 4x107* and, indeed, the observed decrease was (4+0.3) x 107, For the small pair of
apertures, the included angle of the conical part of the lower aperture is 90°. Ray tracing shows
that with this geometry much less of the radiation interrupted by the shutter is made up of
radiation reflected from the conical surface of the aperture, and from the top of the partly closed
shutter (see the dotted path of ray 3, in figure 30). We would, therefore, expect that practically
all of the predicted decrease would be observed, as indeed was the case. This gives us confidence
that the calculations we have made of diffraction effects represent sufficiently closely the actual

10 Vol. 316. A
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behaviour of the radiation and that our deduction of a reflection coefficient of 0.75 for the
low-temperature surfaces, for angles of incidence near 45°, is reasonable.

We now return to the diffraction losses by the large pair of apertures. On the basis of a
reflection coefficient of 0.75 at an angle of incidence of 45°, we must estimate the likely losses
at grazing incidence. Under ideal conditions these would be zero, but taking into account the
relatively poor polish obtained on the conical surfaces, we prefer to allow an absorptance of
0.15+0.1. This loss takes place at both lower (F;) and upper (F,) apertures and leads to a total
fractional diffraction correction D(T) for the large pair of apertures, at a temperature

T'= 273K, of D(273K) = (1.1£0.7) x 1074,

For the small pair of apertures the fractions in this case are F;, and F, for the lower and
upper apertures, leading to a fractional loss of (1+0.7) X 107%. In addition, for the small pair,
a fraction (0.2540.15) of the sum of the fractions (F;—Fy,) and (1—0.15)F; are lost on
reflection at 45° from the inner surface of the bottom of the radiation trap. This amounts to
(1.1£0.7) x 107 The total fractional loss for the small pair of apertures is thus

D(273K) = (2.1+1.2) x 1074,

Note that the uncertainties in the two components of D(T') are strongly correlated because
they both depend to a large extent upon our estimate of the reflection loss at grazing incidence,
hence the combined uncertainty of +1.2 x 1074,

The values of D(T') given above correspond to an effective wavelength of 18.4 um. Similar
evaluations have been made for effective wavelengths of 13.5 um (7 = 373 K) and 21.6 um
(T'=233 K). The results of these calculations have shown that, within this range of
wavelengths, the diffraction losses can be scaled simply in proportion to effective wavelength,
i.e. inversely proportional to 7. The diffraction losses are shown in figure 31 as a function of
T for the large and small pairs of apertures.

2.5 T T T I

(®)

L5 h

10°D(T)

5L 1 | L
0 233 273 323 373
radiator temperature/K

Ficurke 31. The fractional corrections, to be added to the measured radiant powers, due to diffraction losses, (a)
for the large pair of apertures and () the small pair.
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The uncertainties in D(273 K) shown above are the uncertainties used in the determination
of the Stefan—Boltzmann constant. For the measurement of 7" we require the uncertainties in
the change in the value of D(T') between temperatures 7;, and 7. In figure 31 it can be seen
that the slope of D(T') as a function of 7" becomes more negative as the absolute value of D(T)
increases. From these curves we can calculate the uncertainty in slope consequent upon a given
uncertainty in the absolute value of D(T'). The uncertainties in D(T) for both the large and
small aperture pairs so deduced are shown in figure 32.

5 T T T T T T T T T T T T T T T
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Ficurk 32. The uncertainties resulting from uncertainties in the change in the diffraction correction between 273 K

and T, (a) for the large pair of apertures and (b) for the small pair of apertures, calculated in terms
of millikelvin.

8. GAS CONDUCTION AND PRESSURE MEASUREMENT
(a) Conduction by residual water vapour and hydrogen

The pressure in the whole apparatus must be kept sufficiently low for energy transfer from
the radiator by gas conduction to be only a very small fraction of the total energy absorbed
by the calorimeter. This requires not only that the system be free of leaks, but also that the
outgassing rate of the internal surfaces of the radiator be extremely low. A study of the
outgassing rate of 3M black as a function of temperature was made by Compton et al. (1974).
The results showed that, provided adequate baking was achieved, 3M-C 401 has an outgassing
rate that ranges from 1.3x 1077 to 1.3 x 107® Pam3s™ (1071 to 10~® Torr l cm™?s71). To
achieve these figures, the painted surface must be heated in a vacuum to 250 °C for at least
two days. During this operation considerable quantities of greasy matter are given off. In
making these measurements and in the present calculations concerning energy transfer, it was
assumed that, after bake-out, the predominant residual gases in the system are water vapour
and hydrogen.

Pressures were measured with a nude Bayard—Alpert type ion gauge placed inside the
radiator, as shown in figure 1. The gauge was calibrated for nitrogen by the NPL Division of
Mechanical and Optical Metrology. Measurements were made at the beginning and at the
end of each run, but not during'a run, because the heat produced by the filament would cause
too great a disturbance to the thermal conditions in the radiator. Pressures ranged from about
1.5x 1077 Pa (1x107® Torr) for radiator temperatures of about 10°C and below, to
9% 107% Pa (7 x 1078 Torr) for a radiator temperature of 100 °C.

To estimate the energy transfer between the radiator at a temperature 7 and the calorimeter
at a low temperature T, we proceed in the following way. From kinetic theory we have the

10-2
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following relations (see, for example, Tabor 1979) ; the number, n, of molecules per unit volume
in a gas at a pressure P and temperature 7 is given by

n=P/kT.
The average velocity v of such molecules having a molecular mass m is given by
0= (8kT/mm)z, (96)
where m = Mm,, in which M is the relative molecular mass and m, is the atomic mass unit

equal to about 1.66 x 10727 kg. The number, ¢, of molecules striking unit area of the walls of
the container per second is given by

¢ = Ino = LP(kT)™" (8kT/mm)} = 2.6 x 10%P(MT). (97)

The kinetic energy per degree of freedom per molecule is 347. For water vapour, M = 18,
having three rotational and three translational degrees of freedom, this gives a kinetic energy

per molecule E, = 3kT. (98)

At temperatures below about 130 °C vibrational degrees of freedom are not significantly excited
in water molecules.

In addition to the kinetic energy, the energy of adsorption must also be taken into account.
For adsorption of H,O and H, at liquid-helium temperatures we need consider only
physisorption, since the temperature is too low for chemisorption to take place. We have
adopted a value of 17 k] mol ™! for the energy of adsorption of H,O on surfaces at liquid-helium
temperatures. This figure is uncertain to the extent of about 50 %, of its value. Thus the energy
absorbed is given by

E, =2.9x107% J per molecule. (99)

The sum of the kinetic and adsorption energies for water vapour, Ey, is obtained by substituting
(97), (98) and (99) in the relation

Ey = (Ex+E,) $g, (100)

where g is the geometrical throughput, which is identical to that for thermal radiation. Thus
the fractional correction for energy transfer by gas molecules is given by

E E
p(T) = E,(KT) _ “:ﬁa) ¢ (101)

(3kT/J+2.9%x107%0) 2.6 X 10** P 9
- oTVMT ' (102)

For M = 18, this equation gives the fraction of the energy absorbed by the calorimeter that
is due to conduction by water vapour. The uncertainty in the correction is due mainly to the
uncertainty of 50 %, in the adsorption energy of water vapour and uncertainty in the species
of gas present. The uncertainty in the pressure measurement is estimated to be about +209%,.
Overall, we estimate the uncertainty in this correction to be + 60 9, of its value. For hydrogen,
the effect is rather smaller because the adsorption energy is very much smaller, only
0.2 x 1072° J per molecule.

Figure 33 shows (102) evaluated for a range of pressures and temperatures encompassing
those found in this work. The corrections made are always small and the uncertainties associated
with them contribute very little to the final overall uncertainties of the results.
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Ficure 33. The fractional corrections, which must be subtracted from the measured radiant powers,
due to gas conduction. The ranges of pressures observed are indicated by hatched areas.

(b) The effects of hydrogen at low temperatures

There are special problems due to the presence of hydrogen gas that arise only when the
calorimeter temperature is below about 3.5 K. This only occurs with the small pair of apertures
and for radiator temperatures below about 333 K. In the previous section we assumed that
molecules follow only those paths followed by thermal radiation and that molecules entering
the radiation trap are wholly adsorbed on the internal surfaces of the radiation trap, except
for those that pass directly through the top aperture. This is a valid assumption for every gas
except hydrogen and helium. While there is very little gaseous helium present, considerable
quantities of hydrogen are outgassed from the copper radiator assembly, and together with
water vapour it is one of the principal residual gases in the vacuum system. The vapour pressure
of hydrogen at the temperature of the radiation trap, about 6 K, is of the order of 0.1 Pa (ca.
1072 Torr). At the pressures existing in the apparatus, condensation will not, therefore, take
place. Instead, a dynamic equilibrium will be established between the gas molecules entering
the radiation trap and those leaving it. This can be expressed by

P. P, P
T= A =5, (103)
Ty Ty T
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where the subscripts r, rt and csignify, for the purposes of this discussion, the radiator, radiation
trap and calorimeter, respectively. Molecules entering the radiation trap will come to thermal
equilibrium with it before leaving. Monte Carlo calculations (Levinson ef al. 1961) of the
number of collisions with the walls undergone by gas molecules on passing through passages
of various shapes show that for the geometry of the radiation trap an average of about seven
collisions take place. What happens to a hydrogen molecule on leaving the radiation trap and
entering the calorimeter depends critically upon the temperature of the calorimeter. If T, is
above about 4 K, at which the vapour pressure of hydrogen is still above 6.5x 107° Pa
(6x 1077 Torr), condensation will not take place and (103) fully describes the situation. A
dynamic equilibrium will be established between the molecules entering and leaving the
calorimeter. The energy transfer depends upon ( 7, — T), which for the large pair of apertures
is only about 1 K, but for the small pair of apertures can reach 8 K. This leads to significant
kinetic energy transfer by hydrogen molecules for the small pair of apertures, but not for the
large pair.

If, however, the temperature of the calorimeter is below about 3.5 K, which it is when the
small pair of apertures are being used and 7, is below about 50 °C, the situation is very different.
At 3 K, for example, the vapour pressure of hydrogen is below 2 x 1078 Pa (ca. 1 x 1071° Torr)
(Mullins et al. 1961) and every molecule entering the calorimeter will remain and liberate its
heat of adsorption. We estimate the effect of this hydrogen adsorption in the following way.

A quantitative evaluation of the effects of hydrogen adsorption is difficult because we do not
have sufficient information on the amount of hydrogen present in the system. Measurements
of the relative proportions of water vapour and hydrogen made by connecting a mass
spectrometer to the system indicate that most of the residual gas in the outer, hotter, unbaked
regions of the vacuum system was water vapour and the remainder was hydrogen. This is, of
course, only a poor indication of the situation in the inner, cold, baked regions. Nevertheless,
an estimate can be made of the order of magnitude of the effects due to hydrogen. We can
show that the observed differences between the values of (T — Ti,) measured for the small pair
of apertures, in the presence of hydrogen condensation, and those measured without it are in
qualitative agreement.

If the calorimeter temperature T, is below the dew point of hydrogen, the number of
molecules entering the calorimeter is greater than that leaving it by an amount that is
proportional to (P./Ti—p(T,/T%)), where p(T,) is the vapour pressure of hydrogen at a
temperature 7. At very low temperatures all the molecules that enter are condensed and
P/ Ti> p(T,)/T:. Since p(T,) rises exponentially with T, there is a narrow range of
temperature, T,, over which p(T,)/T% becomes comparable with, and then exceeds, P,/ T%
despite the fact that P, is increasing as 7, increases. This takes place in a range of temperature
between about 3.2 and 3.6 K, equivalent to a range of radiator temperature between 30 and
60 °C. The error, AT, in the measured values of thermodynamic temperature is given by

_ o T4+ Go(Ty) ]%
AT=T—Tp [aT%pwc(Ttp) ’

where @,(7;) and Q( T;,) are the rates of energy transfer per square metre by hydrogen
condensation for radiator temperatures of 7, and T, respectively. AT will reach a maximum
just before p(T,)/ T} exceeds P,/ T} and thereafter falls rapidly to zero. This maximum occurs
for radiator temperatures in the range 30-40 °C. Estimates of the magnitude of A 7(max) are
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critically dependent upon the vapour pressure of hydrogen and the pressure of hydrogen in
the system. Using the vapour pressure data of Mullins e al. (1961), and taking half the measured
total pressure in the radiator to be due to hydrogen, we estimated a maximum value of AT
of between 5 and 10 mK, occurring at 7, & 40 °C. The measured value of 7T obtained under
these conditions for 7, = 40 °C with the small pair of apertures was, indeed, some 12 mK above
that found with the large pair of apertures.

To obtain further support for the hypothesis that the difference was indeed due to the effects
of condensed hydrogen, a second series of measurements was made for 7, & 40 °C. During the
second series a constant background current was passed through the calorimeter heater to
maintain 7}, near 5 K, i.e. above the range in which hydrogen condensation takes place. The
results of this series of measurement led to a value of 7 that was 12 mK below that of the first
series, and in consequence the value of (7 — T,) agreed with the value obtained with the large
pair of apertures.

The effect of kinetic energy transfer by hydrogen molecules between the radiation trap and
calorimeter remains to be considered. This is proportional to both T, and the difference
(Ty— T,), and also to the overall pressure of hydrogen in the system. For the large pair of
apertures the effect is negligible, but this is not the case for certain series of measurements made
with the small pair. For the measurements made at 7, = 109 °C, the measured pressure was
relatively high, 1.2 x107® Pa, and (7,,— 7,) was about 8 K (7, ~ 12 K). This led to a
calculated correction of 3 mK, by no means negligible, but subject to considerable uncertainty
due to lack of knowledge of the real pressure of hydrogen in the system. For the measured value
of (T'— Tyg) of this series to agree with that obtained with the large-aperture series a correction
of 5.5 mK would be required.

In view of the uncertainty surrounding these corrections because of the effects of hydrogen,
we have concluded that the only reliable series of measurements of (7— Tg,) made with the
small pair of apertures is that at 40 °C, in which 7, was maintained near 5 K. The
measurements at 60 °C, 80 °C and 109 °C, although in approximate agreement after correction
with those made with the large pair of apertures (they differ by between 5 and 8 mK), are
subject to uncertainties that are difficult to evaluate, but which must be between 5 and 10 mK.
They do not, therefore, contribute useful weight to the final set of values of (7T— Tig) and we
do not include them.

The values of M’(7},) obtained with the small pair of apertures are also subject to the effects
of hydrogen condensation. For radiation temperatures near 273 K, however, the total pressure
in the system was sufficiently low for the hydrogen effects to be small. From estimating @, ( T:,)
we deduced a rate of energy transfer of the order of 4 nW, only 2 parts in 10° of the measured
radiant power. In applying this correction we associate with it an uncertainty equal to its value,
namely + 2 parts in 10° of . This correction and its uncertainty are both small compared with
the other corrections and uncertainties listed for the small apertures in table 16. In calculating
our final value for o, therefore, measured values of M’(T,) obtained with the small pair of
apertures are taken into account, along with those obtained for the large pair.

9. ELECTRICAL MEASUREMENTS AND CONTROL SYSTEMS

The general scheme of the electrical and control systems is shown in figure 34. The most
critical measurements are those of the resistance of the platinum resistance thermometers, the
calorimeter temperature and the electrical power supplied to the calorimeter. The details of
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Ficure 34. A schematic outline of the overall systems of the experiment.

how these are made have already been described in the relevant sections dealing with these
aspects of the experiment.

The cryogenic system included provision for automatic filling of both the liquid-nitrogen and
liquid-helium reservoirs. During a run these automatic systems were switched off, since the
overall thermal stability of the low-temperature part of the apparatus would otherwise be
disturbed. No effects related to the level of the liquid nitrogen or liquid helium in the reservoirs
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could be detected. The proper functioning of the whole assembly was monitored by the
germanium resistance thermometers and industrial platinum resistance thermometers at the
locations indicated in figure 34.

10. MECHANICAL DESIGN

The overall size of the apparatus was fixed, as we have already seen, by the size and separation
of the apertures. One of the principal requirements that had to be met in the design was that
of mechanical rigidity and alignment of the apertures, radiator and calorimeter. For example,
in figure 1 the shutter, attached to the bottom of the radiation trap and at liquid-helium
temperature, must be aligned with the top of the radiator, which is at room temperature or
above, to within 2 mm both vertically and horizontally. The shutter and radiator are
independently supported from the top plate; that is to say through a total distance of some
three metres, passing through temperature zones from 4 K up to room temperature. To achieve
such small tolerances it was necessary first to use a manufacturing process that included full
stress-relief by heat treatment of all welded parts before final machining and, second to have
a design and assembly procedure that allowed the dimensions and positions of all internal
components to be checked during assembly. Without proper stress relief, considerable
deformation would take place in large components on cooling from room temperature to 77
or 4.2 K.

The top plate is made of stainless steel 2.5 cm thick and provides the reference plane and
common axis for all the components. Two reference surfaces, to which are bolted the
liquid-nitrogen and liquid-helium reservoirs, were machined on the lower surface of this plate.
The nitrogen reservoir is of welded annular construction and is made entirely of stainless steel.
On the lower flange of this a reference surface is machined to which a copper can is bolted.
From the lower flange of this can, the radiator is accurately suspended with reference to the
top plate by using eight 1 mm diameter stainless-steel wires.

The helium reservoir has a stainless-steel top flange and walls, but the lower flange, which
has an upward pointing central well (see figure 1), is made from o.f.h.c. copper, vacuum-brazed
to the wall. This copper flange has two reference surfaces machined on its lower face. The first
provides location for another copper can, which has an accurately machined inside diameter
that acts as an axial reference surface into which the radiation trap slides. The mating reference
surface on the radiation trap is marked J in figures 12 and 28. As well as locating the radiation
trap, this copper can also supports the shutter, which means that the length of this can is critical
because it is one of the determiming dimensions fixing the separations of the lower aperture,
shutter and radiator. The second reference surface on the lower flange of the helium reservoir
locates six thin-walled stainless-steel tubes. Three of these serve simply to provide the location
and support of the 2 K reservoir (one of these is marked S in figure 12), while the other three,
in addition, pass up through the helium reservoir to the top plate (one of these is marked P
in figure 12). These three provide means of pumping, pressure sensing and operation of the
needle valve for filling of the 2 K reservoir, and are connected to the 2 K reservoir by indium-wire
seals. The final reference surface to be mentioned here is that machined on the inner lower
surface of the 2 K reservoir (K in figure 12), to which is bolted the copper tube that supports
the stainless-steel heat link and calorimeter. The length of this copper tube is such that the lower
aperture of the calorimeter is just 1 mm above the upper aperture in the radiation trap.
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11. REsuLTs
(a) Measurement procedure

A total of 297 measurements were made with the large pair of apertures. The majority (270)
were for the measurement of thermodynamic temperature at fifteen temperatures between
about —40and + 100 °C and the remainder were for the measurement of the Stefan—-Boltzmann
constant. With the small pair of apertures, 100 measurements were made, again the majority
were for the determination of four temperatures between +40 and + 109 °C, with 20
measurements being used for the Stefan—Boltzmann constant.

Figures 35 and 36 illustrate the way a typical set of results were obtained for the measurement
of M’(T,,) and M’(T) with the large pair of apertures. Consider first the measurement of
M’ (T,,): the radiator is adjusted to obtain a suitable drift rate at a temperature within about
two degrees of 273.16 K and its temperature distribution is measured with the shutter closed.
The shutter is opened and the calorimeter allowed to come into equilibrium. About thirty
minutes after the opening of the shutter, equilibrium is reached and the measurements
illustrated in figure 35 are begun. The radiator temperature is measured by using the
thermometers on the middle flange (7}, Tg), lower flange (7, T;) and the cone (7, T;). At
the same time, the resistance of the calorimeter thermometer is measured so that a series of
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Ficure 35. Data obtained during a run at a radiator temperature of 273 K using the large pair of apertures. The
radiator temperature, g, at time ¢ from the three temperatures, read from platinum resistance thermometers,
T, (—0.4568 °C), T, (—0.4546 °C) and T; (—0.4507 °C) is —0.4556 °C for a drift rate of —0.6 mK/5 min.
The calorimeter temperature is obtained from the resistance of the germanium thermometer. The electrical
power, obtained from the average of (a) forward, and (b) reverse, current values is 1.339730 mW. Data from
run number 8 at 102 °C (Ty,) (see table 19).
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values of radiator temperature and calorimeter thermometer resistance are obtained. After such
measurements have been made for about 40 min, all of which are made in a strict time sequence,
the shutter is closed and electrical power applied to the calorimeter. The power is adjusted until
the calorimeter temperature is within the range previously observed when the shutter was open.
After a suitable series of power measurements have been made, as shown in the figure, the
current is reversed and a second series made. From these measurements, taking account of
the time constant of the calorimeter, a temperature of the radiator can be associated with the
measured power on the calorimeter. The temperature of the three thermometers mounted in
the radiation trap and the thermometer attached to the shutter are also recorded both for the
open and closed positions of the shutter. The pressure inside the radiator is measured about
three times during a series of measurements.

For the determination of the Stefan-Boltzmann constant with the large pair of apertures,
three series were made, each comprising about ten measurements, and two similar series with
the small pair. Between each series the whole apparatus was warmed to room temperature and
pumped for periods of between one and four weeks. In addition, for the second series made
with the small pair of apertures, the calorimeter was maintained at temperatures above about
5 K to avoid the effects of hydrogen condensation.

The measurement procedure for radiator temperatures away from 273.16 K is the same as
just described, but the use to which the measured power is put is, of course, different. Instead
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Ficure 36. Data obtained during a run at a radiator temperature near 373 K with the large pair of apertures. The
radiator temperature, fg, at time ¢ from the three temperatures, read from platinum resistance thermometers,
T, (101.8844 °C), T; (101.8891 °C) and T, (101.8954 °C) is 101.8864 °C for a drift rate of —2.8 mK/5 min.
The calorimeter temperature is obtained from the resistance of the germanium thermometer. The electrical
power, obtained from the average of (a) forward, and (b) reverse, current values is 4.791526 mW. Data from
run number 7 at 102 °C (see table 19 and figure 10).
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of deducing a value for M’(T,,), the measurements allow us to obtain M’(7T) and hence
(T— Tg), where Ty is the effective temperature of the radiator in terms of the IPTS-68
calibrations of the platinum resistance thermometers. Figure 36 illustrates such a measurement
for a radiator temperature of 102 °C. From each value of M’(T'), a value of thermodynamic
temperature T can subsequently be obtained by using the mean of the values of M’(T;). For
each of the fifteen temperatures between —40 and + 102 °C measured with the large apertures,
about ten values of M’(T;), followed by ten values of M’(T},), were obtained.

Figure 37 shows the order in which the measurements of 7 were made with the large pair
of apertures. This figure also shows the values of M’(T;) obtained after each measurement
of M’(T) and the occasions on which the whole apparatus was warmed to room temperature.
As expected, the values of M’(T;,) that immediately follow excursions of the radiator to high
temperatures are depressed, but subsequently recover after the next warm-up to room
temperature. We suppose that this is due to the effects of cryodeposited films on the mirror
surfaces, M, and M;, and on the lands. These films form when the pressure in the radiator
rises, as a result of outgassing, during the heating of the radiator to high temperatures and are
removed by warming these surfaces to room temperature. We have, therefore, generally taken
as the reference value for M’(7;,) in calculating 7, the one measured immediately after M’ (T).

There is evidence, however, that even without warming to room temperature, some clean-up
takes place during prolonged use at low radiator temperatures following a run at high
temperatures (see figure 37, February and March 1982 and May and June 1982). For the
measurements of 7 at fge = —11, —21 and —31 °C and at 12 and 21 °C we have taken,
therefore, the mean of the values, weighted with time, of M’(T;;) before and after these sets
of runs. These changes in M’(T;;), although significant, are not very large and only exceed
7 parts in 10° for temperatures of 90 °C and above.

By using the small pair of apertures, measurements were made at 40, 60, 80 and 109 °C.
At 40 °C, two sets of measurements were made, during the second set the calorimeter was
maintained near 5 K to avoid the effects of hydrogen condensation. For this set the values of
M’(T;,) used in the calculation of T were those of the second series of measurements with the
small pair of apertures used for the calculation of o, and during which T, was also maintained
near 5 K. As we have already seen in §8 (b), only those measurements of 7" not subject to the
effects of hydrogen condensation are included in our final results.

(b) Corrections and uncertainties

The principal measured quantities in both the Stefan-Boltzmann and thermodynamic-
temperature work are the temperatures on IPTS-68 given by the platinum resistance
thermometers and the electrical power applied to the calorimeter given by V, V,/R;. In addition
there are various small measured or calculated corrections. As explained in earlier sections, the
relations between the thermodynamic temperature of the radiator (which we now revert to
calling T or T;,) and these measured and calculated quantities are thus:

M'(T) = M"(Tes+AT) = Fle,a) g(1—=D(T)) (1= L(T)) (1+5) (L+p(T)) o T* (104

and M(T) = (V, Vi R) T—3M"(T), (105)
where AT = T— T, and the other quantities are:

F(e,a), the thermal radiation transfer function, which has no significant dependence upon

the radiator temperature (§4 (b));
Tys, the effective temperature of the radiator given by (34) (§§2(¢) and 4 (a));
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Frcure 37. This figure shows the order in which measurements of T were made with the large pair of apertures.
Also given are the values of M’(T,,) obtained after each measurement of 7T (after the first value only the last
three figures of the subsequent values are given). The value of M’(T;) equivalent to the final value for o (large
apertures) is 1.350200 mW. The double-headed arrows indicate the occasions on which the whole apparatus
was warmed to room temperature: A, a failure of the turbomolecular pump; B, breakage of the shutter control
wire; C, a period during which leaks appeared in a top-plate seal of the liquid-nitrogen reservoir.

g, the throughput (§6(¢));

D(T), the diffraction correction, which is a function of effective wavelength and hence a
function of T (§7 and figures 31 and 32);

L(T), the land scattering correction, which has a small wavelength dependence and is thus
also a function of T (§5 (¢) and figure 27);

s, the radiation-trap scattering correction, which has a negligible wavelength dependence
(§6 (d) and table 11);

p(T), the pressure correction, which depends upon radiator temperature (§8 () and figure
33);

dM’(T), the change in radiant power entering the calorimeter from the radiation trap on
opening and closing the shutter (this depends upon 7" (§6 (d))).

For the determination of the Stefan-Boltzmann constant, 7 is made sufficiently close to
273.16 K, the triple point of water, for the measured radiator temperature 7, to be equivalent
to the thermodynamic temperature with negligible error, i.e. AT ~ 0 (this difference between
T and T,y deduced from our measurements at 274 K, for example, is about 0.3 mK).

For the measurement of 7, which we write as (Tg3+AT), the relation between measured

quantities is given by

M/(T) _ M/(Ty+AT) _

M'(Tip) M'(Ty) — [=D(T)1[1—L(Tp)1[1+p(T,p)]
MA(T) _ [V, T/ Ry=3M'(T)]y o)
M'(Ty) (Ve Vo/Rs=8M"(Tip)1r,,’

Ty

[1=D(T)] [t =L(T)][1+p(T)] ( T)“

and
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where we assume that M’(T;;) is measured immediately after M’(T). From these relations,
T can be determined in terms of the measured voltages and resistance and the small corrections.
Since for each value of T the equivalent value of T4 is already known, the difference (7'— Tg,)
is also obtained.

A summary of the corrections and their associated uncertainties of both type A and type B
(see §1(¢)) given in terms of one standard deviation is given in tables 13 and 14 (a) and ().
The combination of these uncertainties is straightforward since, with the exception of F(e, a)
and s, they are all considered to be independent and can therefore simply be combined in
quadrature.

TABLE 13. SUMMARY OF CALCULATED CORRECTIONS AND UNCERTAINTIES IN THE
DETERMINATION OF THE STEFAN—BOLTZMANN CONSTANT O

large pair of apertures small pair of apertures
calculated relative calculated relative
correction uncertainty correction uncertainty
quantity 10* (Ao /o) 10* (Ao /o) 10* (Ao /o) 10* (Ao /o)
Fl(e,a) 6.1 1.4@® W 2.7 1.0@
D(T) 1.1 0.7 2.1 1.2
L(T) 2.4 0.2 1.8 0.15
s —0.8 0.2@ —0.8 0.2®
AT(H,)® nil nil —0.2® 0.2®
v, V./R, — 02 ( wreB — 02 ( tpeB
To — 0.1 — 0.1
pT©@ — <0.01 — <0.01
AM'(T)® — <0.01 — <0.01
— 0.9 — 1.6
std deviation of n
measured values — (n=27) 0.12@ type A — (n=20) 0.5 type A
combined corrections
and uncertainties 8.8 1.7 5.6 2.2

@ These uncertainties are strongly correlated because they both stem from uncertainties in surface reflectance.
The combined uncertainties of F(e, a) and s are thus 1.2 x 107 and 0.8 x 107 for the large and small apertures,
respectively.

(® This correction applies only to the first set of measurements made with the small pair of apertures, which
are given in table 16.

(© Each individual measurement of o is subject to small corrections p(7T) and 8M’(T), which are listed in tables
15 and 16; here only the uncertainties in these corrections are given.

@ Values taken from tables 15 and 16.

Rewriting (106) and (107), substituting ( 745 +AT) for T'and writing D(7T— T,,,), L(T— T;p)
and p(T—T,,) for the differences between the diffraction, land and pressure corrections at

temperatures 7 and T

p» we find

—SM'(T. i
n8+AT= 7';D|: [I/C I/S/Izs 8 ( I’t)]T ]

[Ve Vo/ Rg—8M'(Tip) 1, [1—AD(T—Tp) + L(T—Tip) +p(T— Tip)]
(108)
(¢) The Stefan—Boltzmann constant

Tables 15 and 16 show the results of all the measurements made for the determination of
the Stefan—Boltzmann constant with the large and small pair of apertures respectively. In each
table the first five columns refer to the radiator temperature, giving values of T}, Ty and T,
by difference from the effective temperature ¢4 (given in column 5) and the drift rate. Column
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TABLE 14. SUMMARY OF CALCULATED CORRECTIONS AND UNCERTAINTIES IN THE DETERMINATION
OF THERMODYNAMIC TEMPERATURE FOR BOTH THE LARGE AND SMALL PAIR OF APERTURES

(a) large pair of apertures*

T=233K T=375K
calculated relative calculated relative
correction, uncertainty, correction, uncertainty,
quantity AT/mK AT/mK AT/mK AT/mK
D(T—-T,) 1.1 0.7 —2.8 1.7
L(T-T,,) —0.6 0.2 2.1 0.4
V., V,/R — 0.3 — 0.5
7&;8 siTs . 0.6 type B . 1.0 type B
p(T)** — 0.1 — 0.1
M’ (T)** — 0.05 — 0.1
std deviation of n
measured values — (n=20) 0.8 type A — (n=20) 14 type A
combined corrections
and uncertainties 0.5 1.3 —0.7 2.5

(b) small pair of apertures

T=313K
calculated correction, relative uncertainty,
quantity AT/mK AT/mK

D(T-T,) 3.2 1.0
L(T—-T) —0.8 0.2
ATH,) T, <4K XH** X
ATH,) T.~5K nil*** — type B
V. Vi/R, - 0.4
Tes — 0.8
p(T)** — 0.5
SM'(T)** — 0.5
std deviation of n

measured values — (n=20) 54 type A
combined corrections

and uncertainties

T.<4K (difficult to evaluate)

T.~5K 24 5.6

* The values given in this table are intended to give an overall view of the magnitude of these corrections and
their uncertainties for values of T at the extremes of the measured range. The corrections and type A uncertainties
for each individual measurement are given in tables 19 and 20 in terms of radiant power. The type B uncertainties
for intermediate temperatures are given in table 18.

** The corrections to each individual measurement are given in tables 19 and 20.

*** X represents the correction and its associated uncertainty, each of the order of 10 mK, due to hydrogen
condensation (§8(5)) present only for T, < 4 K.

TABLE 15. STEFAN—BOLTZMANN CONSTANT, 0 (LARGE APERTURES)
first set (29 April 1981 to 8 May 1981)

dT/5 min SM/(T) p(T) [D(T)+L(T)]  [Fle,a)+s] 108 o
T,/mK T,/mK T,/mK oK ts/°C  M'(T)/mW ~— oW oW oW nW Wm K9
+159 —02 —36 +1.8 —0.7547 1334015 —18 —4 468 707 5.67002
+121 402 —28 407 01628 1352091 —19 —4 474 717 5.67006
—22 412 405 —20 —07232 1334610 —19 —4 468 708 5.66991
+04 +07 —01 —1.6 —0.6795 1335493 —18 —4 468 708 5.67003
+21 405 —05 —13 —07017 1335044 —18 —4 468 708 5.66998
+04 +06 —0.1 —16 —0.6504 1.336065 —18 —d4 469 708 5.67004
+14 +08 —03 —13 —06852 1335360 —18 —4 468 708 5.66994
—12 +09 +02 —19 —05127 1338764 —19 —4 470 710 5.67002

mean Stefan—Boltzmann constant = (5.67000+0.00005) x 1078 W m™2 K™
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TABLE 15. (continued)

second set (21 May 1981 to 2 June 1981)

d7/5 min 3M(T) p(T) [D(TV+L(T)]  [Flea)+s] 108 ¢
Ty/mK T,/mK ~— mK  4/°C  M/(T)/mW aW oW nW nW (Wm™2K™)
+18 +29 —43 2.5031  1.398933 —-20 —4 490 742 5.66979
+16 +24 —40 2.3986  1.396828 -20 —4 489 741 5.66985
+1.7 427 —42 2.2363  1.393514 -20 —4 488 739 5.66974
+16 +14 3.1 0.2978  1.354715 -19 —4 475 718 5.66985
+13 408 —22 0.0538  1.349920 —-19 —4 473 716 5.66999
+11 406 —21 —0.0508 1.347831 —-19 —4 472 715 5.66990
+10 +04 —20 —0.0997 1.346887 —-19 —4 472 714 5.66999
+09 +08 —22 0.0119  1.349070 —-19 -4 473 715 5.66990
+1.1 406 —22 —0.1239 1.346379 —18 —4 472 714 5.66986
+10 405 —21 —0.1740 1.345381 —-19 —4 472 713 5.66982
mean Stefan—Boltzmann constant = (5.66987 +0.00008) x 107* Wm™2 K™
third set (25 June 1981 to 2 July 1981)
+10 +12 =27 0.1579  1.351938 —18 —4 474 717 5.66983
+09 +08 —23 0.0909 1.350615 —18 —4 473 716 5.66984
+12 407 24 0.1515  1.351791 —-19 —4 474 717 5.66974
+09 +04 21 0.0830 1.350486 —18 —4 473 716 5.66995
+09 +05 2.0 0.0031  1.348862 —18 —4 473 715 5.66976
+1.1 402 —19 —0.0572 1.347695 —18 -4 472 715 5.66986
+09 +03 —19 —0.1029 1.346790 —18 -4 472 714 5.66985
+08 +0.1 —1.7 —0.1444 1.345967 —18 —4 472 714 5.66983
+08 +02 —1.8 —0.2242 1.344435 —18 —4 472 713 5.67000
mean Stefan-Boltzmann constant = (5.66985+0.00008) x 107* W m™2 K™
TABLE 16. STEFAN—BOLTZMANN CONSTANT, 0" (SMALL APERTURES)
first set (16 May 1983 to 20 May 1983)
dT/5 min SM'(T) p(T) [D(T)+L(T)] [F(e, a)+s] 10% o
T/mK T,/mK ™~ K 4/°C M/(T)/mW nW nW nW nW (Wm™2K™)
—-06 +03 -—3.1 2.1801 0.217144 —2 -5 84 41 5.66956
-03 402 28 2.0618 0.216747 —2 -5 83 41 5.66893
+0.1 401 —22 1.6865 0.215560 -1 -5 83 41 5.66877
+01 401 —22 1.6179  0.215342 -3 -5 83 41 5.66865
+03 401 —18 1.2353  0.214162 —1 -5 83 41 5.66914
+04 401 —18 1.1811  0.213993 -3 -5 83 41 5.66909
+04 401 —16 0.9330  0.213207 -3 -5 82 41 5.66875
+05 400 —1.5 0.8737  0.213031 -3 -5 82 40 5.66898
+06 +00 -—14 0.6528  0.212340 -3 -5 82 40 5.66885
+05 400 —1.4 0.6065 0.212191 —2 -5 82 40 5.66873
mean Stefan—Boltzmann constant = (5.66894 10.00027) x 107* Wm™2 K™
second set (18 October 1983 to 26 October 1983)
+16 —-02 —03 0.3703  0.211485 —1 —1 82 40 5.669 54
+19 —-03 +0.2 0.3709  0.211483 +0 —1 82 40 5.66946
+19 —-02 +0.1 0.7618  0.212693 —1 +0 82 40 5.66940
+19 —-02 -00 0.7661  0.212708 —1 +0 82 40 5.66944
+19 —-02 +0.1 0.9073  0.213166 -1 +0 82 41 5.66995
+18 —-02 +0.0 0.9134 0.213170 —1 +0 82 41 5.66955
+12 —0.1 —08 —0.0842 0210112 +0 +0 81 40 5.67036
+13 —-01 —09 —0.1169 0.209992 -1 +0 81 40 5.66981
+14 —0.1 —06 —0.0814 0210116 -1 +0 81 40 5.67021
+15 —0.1 —06 —0.1024 0.210021 -1 +0 81 40 5.66939

mean Stefan-Boltzmann constant = (5.66971+0.00035) x 107®* W m™2 K™
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TABLE 17. FINAL RESULTS OF THE RADIOMETRIC DETERMINATION OF THE STEFAN—BOLTZMANN
CONSTANT

large pair of apertures

std deviation of 7 std deviation of
measurements®, type B uncertainties®™,
108 c/(Wm2K™) 10%¢/(Wm™K™) 108 o/(W m—2 K™4)

1st series 5.67000 0.00005 (n = 8)

2nd series 5.66987 0.00008 (n = 10) 0.00096

3rd series 5.66985 0.00008 (n = 9)

mean value 5.66991 0.00007 (n = 27) 0.00096

small pair of apertures

1st series 5.66894 0.00027 (n = 10) 0.0012

2nd series 5.66971 0.00035 (n = 10) ’

mean value 5.66933 0.00031 (n = 20) 0.0012

combined uncertainty)
weighted mean 5.66967 0.00076

@ Type A uncertainties; values obtained from tables 15 and 16.
® Values taken from table 13.

6 shows the measured power equivalent to this value of ¢4, columns 7 to 10 show the corrections
which are made to this measured power and column 11 shows the resulting value for . The
mean value of ¢ is given for each series together with the standard deviation of the measured
values. The mean values of the three series of table 15 and two series of table 16 are given
together with their associated standard deviation in table 17. The overall relative uncertainties
for these two mean values of o are obtained from table 13. These are 1.7 parts in 10* and 2.2
parts in 10* for the large and small aperture series, respectively. We thus find that the value
of o obtained from the measurements made with the large pair of apertures is

o= (5.66991+0.00096) x 1078 W m~2 K4,
and for the small pair of apertures:
o= (5.66933i0.001 25) x 1078 Wm2 K™

Our final value for o, which we have chosen to obtain by combining these two results with
a weighting inversely proportional to the square of their respective standard deviations, is thus

o = (5.66967 +0.00076) x 10~* W m~2 K.

Other ways of combining the data do not lead to final results differing by more than a small
fraction of the standard deviation of the value given here.

This new measured value, the uncertainty of which is equivalent to 1.3 parts in 10* of o,
differs by 1.3 parts in 10* from the value calculated from fundamental physical constants given
in §1 1
in §1(a), namely o = 5.6704240.00019) x 10~ W m™2 K~4.

The difference between these two values is thus a little less than their combined standard
deviations and cannot, therefore, be considered significant (see figure 38). The previous best

11 Vol. 316. A
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measured value of o, that of Blevin & Brown (1971), differed from the calculated value by
about 1 part in 10%, although this difference was not at the time considered significant, owing
mainly to uncertainties related to the radiator at 1337 K. Our new result has, therefore, reduced
by about a factor of ten the possible inconsistency between the measured and calculated values
for o.
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Ficure 38. Experimental values for the Stefan—Boltzmann constant obtained since 1921. Note the long period, 1924
to 1965, during which all measurements apparently led to values, on average, 1.8 %, too high. The uncertainties
are the authors’ own estimates, and for Blevin & Brown (1971) represent a 99 %, confidence level. For the present
work and for the calculated value the uncertainties are shown as +1 standard deviation. For bibliographic
references to all the work before 1971, see Blevin & Brown (1971). The value calculated from physical constants
is (5.6704210.00019) x 1078 W m~2 K™%, The values or references, or both, for the other points are:

(1) present work, (5.66967+0.00076)x10 8 Wm™2K™; (2) Blevin & Brown (1971), (5.6644+
0.0075) x 107 W m™* K™*; (3) Kendall (1968); (4) Gilham (1965); (5) Faure (1965); (6) Eppley &
Karoli (1957); (7) Muller (1933); (8) Mendenhall (1929); (9) Hoare (1928); (10) Kaussmann (1924); (11)
Hoffman (1923); (12) Wachsmuth (1921).

It has, in addition, brought the uncertainty of radiometric measurements of & down to within
nearly a factor of three of that of the value calculated from fundamental physical constants.
Indeed, the repeatability of the measurements is already rather better than this (12 parts in
108 for the large pair of apertures (see table 17)) and thus holds out the possibility of a further
substantial improvement provided that some of the other sources of uncertainty can be reduced.
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This is discussed further in the last section of this paper. The final value for o given here does
not differ significantly from the preliminary value given by Quinn & Martin (1984).

The value of the gas constant, which can be deduced from our result by using the relation
for o given in (1) and (2) and on the basis of the values of # and N, given in §1(a), is
R =8.3142040.00027 J K™ mol™. This is 33 parts in 10% different from the value of
Colclough et al. (1979) obtained from measurements of the speed of sound (see also Colclough
(1981) and Quinn et al. (1976)). However, the uncertainty (32 parts in 108) is more than three
times larger than that of the acoustic value. Nevertheless, it is a striking example of the unity
of physics: a value for the gas constant determined from measurements of the thermal radiative
power of a black body by using the quantum theory of radiation deduced for an ideal, infinite,
lossless closed cavity being indistinguishable from one obtained from measurements of the speed
of sound in argon, by using a theory based upon classical dynamics of a continuous fluid. This
result could also be interpreted as providing an experimental verification, to 1.3 parts in 10%,
of the Planck radiation law for 273 K radiation.

(d) Thermodynamic temperatures

The thermodynamic temperatures and the differences (7 — T,) resulting from this work are
shown in figure 39 and table 18. For each of the fifteen temperatures measured with the large
pair of apertures and the single temperature obtained without the effects of hydrogen
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Fiure 39. Results of radiometric measurements of (7'— Tg,) between 233 K and 373K : e, large pair of apertures;
0O, small pair of apertures. The bars on each point represent +1 standard deviation of the measured values
(type A uncertainty). At the bottom of the figure the chained line indicates one standard deviation of the type
B uncertainty for the large pair (upper line) and the small pair (lower line). Also shown are the measured
values of (T— Tgg) of Guildner & Edsinger (1976), o, together with their fitted curve, ——, and values from
Kemp et al. (1984), x.
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condensation by using the small pair of apertures, the results are given in full in tables 19 and
20. These results do not differ significantly from the preliminary values for ¢, & 50, 70 and
90 °C given by Quinn & Martin (1982). For each temperature in tables 19 and 20 the results
are given in two parts, first the results of the series of about ten measurements of M’(7;;), from
which a mean value of M”(T;;) is deduced, and second the results of the series of measurements
of M’(T). By using the mean value of M’(7,), a value of T'is calculated from each of these
values of M’(T). The layout of the tables follows closely that of tables 15 and 16; columns
1 to 5 give the temperature distribution, drift rate and effective temperature, /4, of the radiator,
column 6 gives the measured value of M’(T'), columns 7 to 10 give the corrections that are
applied to the measured power and column 11 gives either the calculated value of M’(7y,)
or 7. A final column in the second part gives (T — Tg,). Below each part of the table is the
mean value of M’(T,,) or (T— Ti,). Each of these means has an uncertainty, which is the
standard deviation of the individual values about the mean.

TaBLE 18. FINAL RESULTS FOR (7T — Tgg)

uncertainties (1 std deviation)/mK

tes/°C (T—Tys)/mK type A® type B® combined
—37.97 3.8 0.8 1.0 1.3
—30.75 4.2 1.3 1.0 1.6
—27.75 4.4 0.9 1.0 1.3
—20.87 3.1 1.6 1.0 1.9
—10.86 1.2 1.5 1.0 1.8
12.12 —-3.2 1.1 1.0 1.6
20.75 -7.0 1.0 1.2 1.6
22.86 —5.8 1.6 1.2 2.0
39.69 —-9.1 0.8 1.4 1.6
40.22(© —-9.8 54 1.5 5.6
53.85 —13.0 1.0 1.4 1.7
63.66 —18.4 1.0 1.5 1.8
70.91 —19.1 2.4 1.6 2.9
80.57 —22.8 1.8 1.8 2.5
91.63 —24.3 1.9 1.9 2.7
102.03 —29.9 1.4 2.1 2.5

@ Taken from tables 19 and 20.
®) Tnterpolated values based upon those given in tables 14 (a), (5).
©) This measurement was made with the small pair of apertures.

The uncertainties of these means are then combined to give a standard deviation of the mean
value of (T'— Tg,). This is a type A uncertainty and is given for each temperature in the tables
and shown in figure 39 by the bar that is attached to each point. In addition, each value of
(T— Tgg) is subject to a type B uncertainty, which is the combination of the other uncertainties
given in tables 144 and 14 4. These are the uncertainties that stem mainly from uncertainties
in the difference between the diffraction and land corrections at temperatures T and 7;,. They
increase from about 1 mK at and below 273 K to 2.1 mK at 373 K, and are given in
table 18 and shown by the chained lines at the bottom of figure 39. The combined type A and
type B uncertainties are also given in table 18.

The differences (T — Tg,) shown in figure 39 are in very close agreement with those deduced
from gas thermometry by Guildner & Edsinger (1976) and which are also shown in the
figure. The measurements of Guildner & Edsinger extended to much higher temperatures
than ours (730 K), but did not extend below 273 K. More recently, gas thermometry by
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TaBLE 19. VALUEs oF T— T,

temperature: —38 °C (13 July 1982 to 28 July 1982)

mean (T— Tg) = +4.410.6 mK
combining the uncertainties: (7— Tg) = +4.4+0.9 mK at tg = —27.75 °C

d7/5 min SM'(T) p(T) [D(T)+L(T)] [F(e, a)+s] M’ (Tip)
mK ts/°C  M’(T)/mW  aW nW nW nW mW
+02 —0.1698 1.345420 +12 -3 472 713 1.350165
—04 —0.1931 1.344967 +12 -3 472 713 1.350172
—13 —0.6827 1.335328 +12 -3 468 708 1.350156
—1.4 —0.7463 1.334087 +12 -3 468 707 1.350161
+1.8 —0.4734 1.339438 +12 -3 470 710 1.350160
+1.7 —0.4384 1.340158 +12 -3 470 711 1.350191
+1.6 —0.2474  1.343902 +12 -3 471 713 1.350177
+1.5 —0.2247  1.344339 +12 -3 472 713 1.350167
+13 —0.1562 1.345690 +12 -3 472 713 1.350169
+1.3 —0.1349 1.346090 +12 -3 472 714 1.350 147
mean M’(Tip) = 1.350167 +0.000012 mW
t/°C
—0.6 —37.3300 0.749335 +4 -2 269 397 —37.3270
—0.3 —37.5299 0.746798 +4 -2 268 396 —37.5269
—04 —37.5511 0.746548 +4 -2 268 396 —37.5466
—0.3 —37.7660 0.743811 +4 -2 267 394 —37.7628
—0.2 —37.7838 0.743591 +4 -2 267 394 —37.7802
—0.2 —37.9794 0.741136 +4 -2 266 393 —37.9748
—0.2 —37.9960 0.740917 +4 -2 266 393 —37.9921
+0.1 —38.5652 0.733767 +4 -2 264 389 —38.5615
+0.1 —385746 0.733656 +4 -2 264 389 —38.5704
+0.2 —38.6657 0.732515 +4 -2 263 388 —38.6616
mean (T— Tg) = +3.840.6 mK
combining the uncertainties: (T — Tg) = +3.8+0.8 mK at tg5 = —37.97 °C
temperature: —28 °C (22 November 1982 to 3 December 1982)
dT/5 min SM/(T) p(T) [D(T)+L(T)] [Flea+s]  M'(Tip)
mK tes/°C M'(T)/mW  aW nW nW nW mW
—-35 —1.1008 1.327149 —18 -5 465 704 1.350122
—3.5 —1.1730 1.325742 —17 -5 465 703 1.350125
—-0.3 —1.0277 1.328600 —-18 —4 466 704 1.350149
—0.2 —1.0079 1.328975 —18 —4 466 705 1.350137
—0.4 —0.7013 1.334966 —18 —4 468 708 1.350128
—0.4 —0.6887 1.335207 —18 —4 468 708 1.350123
—0.9 —0.3831 1.341210 —18 —4 470 711 1.350124
—-0.9 —0.3868 1.341123 —18 —4 470 711 1.350110
—-09 —0.2234 1.344351 —18 -4 472 713 1.350122
—1.0 —0.2219 1.344366 —-19 —4 472 713 1.350106
mean M'(Tip) = 1.350125+0.000012 mW
t/°C
+0.3 —28.3263 0.870511 —-10 -3 311 462 —28.3216
+0.4 —28.2978 0.870919 —-10 -3 311 462 —28.2929
+0.4 —27.8558 0.877210 -10 -3 313 465 —27.8519
+0.4 —27.8271 0.877632 —-10 -3 313 465 —27.8224
+0.2 —27.4886 0.882491 —-10 -2 315 468 —27.4835
+0.1 —27.4701 0.882747 —-10 -2 315 468 —27.4657
+0.0 —27.4538 0.882986 —-10 -2 315 468 —27.4490
—0.6 —27.2996 0.885181 —-10 -2 316 469 —27.2965
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TABLE 19. (continued)

M’ (Tip) (1 February 1982 to 8 February 1982)

dT/5 min
MK 4/°C  M’(T)/mW
—28 04717 1.358082
—2.8 04051 1.356814
—35 05415  1.359452
—35 04561 1357823
—34 00420 1.349579
—3.2  —0.0333 1.348135
—1.0 —0.0092 1.348629
—0.7 —0.0184 1348435
—1.9 08481 1.365594
—1.8 08145 1.364941

—2.7 —30.1005
—23 —30.4282
—2.2 —30.4922
—17 —30.8132
—1.7 —30.8429
—1.5 —30.9344
—1.5 —30.9705
—1.6 —31.0581
—1.6 —31.0955

0.845567
0.841010
0.840143
0.835691
0.835291
0.834039
0.833556
0.832348
0.831820

combining the uncertainties: (7 — Tgg) = +4.2+ 1.3 mK at g = —30.75 °C

—0.8 —21.4651
—0.5 —21.4637
—0.4 —20.8981
—0.4 —20.8908
—0.8 —20.7309
—09 —20.7345
—1.3 —20.6493
—1.2 —20.6649
—1.1 —20.6022
—1.1 —20.6199

0.972297
0.972285
0.981067
0.981170
0.983655
0.983591
0.984959
0.984733
0.985681
0.985422

combining the uncertainties: (7'— Tgg) = +3.1+ 1.6 mK at g = —20.87 °C

1.142763
1.149340
1.153736
1.150590
1.149775
1.147275
1.146606
1.144563
1.141872
1.141298

M(T) p(T) [D(T)+L(T)] [Fle,a)+s]  M'(Typ)
nW nW nW nW mW
—-20 -—10 476 720 1.350097
—-19 —10 476 719 1.350152
-19 -1 477 721 1.350081
—-19 —11 476 720 1.350147
—19 —12 473 716 1.350104
—19 -—12 472 715 1.350147
—19 —12 473 715 1.350166
—-19 —12 473 715 1.350153
—-19 —13 479 724 1.350118
—-19 —13 479 724 1.350135
mean M'(Tip) = 1.350130+0.000028 mW
temperature: —31 °C (8 March 1982 to 16 March 1982)
t/°C
—-10 -2 302 448 —30.0969
—-10 -2 301 446 —30.4251
—-10 -2 300 445 —30.4877
-10 -1 299 443 —30.8100
-10 -1 298 443 —30.8390
-10 -1 298 442 —30.9300
—-10 -1 298 442 —30.9651
—-10 -1 297 441 —31.0529
—-10 -1 297 441 —31.0913
mean (T— Tg) = +4.24+0.8 mK
temperature: —21 °C (23 February 1982 to 2 March 1982)
—-12 -5 345 515 —21.4607
—-12 -5 345 515 —21.4615
—-12 -5 348 520 —20.8952
—-12 -5 348 520 —20.8886
—-12 -5 349 522 —20.7290
—-12 -5 349 521 —20.7331
—-12 -3 349 522 —20.6455
—-13 -3 349 522 —20.6600
—-12 -3 350 523 —20.5993
—-13 -3 350 522 —20.6160
mean (T—Tg) =+3.1+1.2mK
temperature: —11 °C (11 February 1982 to 19 February 1982)
—1.8 —11.0880 —-15 —10 403 606 —11.0875
+0.5 —10.7129 —15 -9 405 609 —10.7113
—23 —10.4635 —15 -8 407 612 —10.4608
—23 —10.6401 —15 -8 406 610 —10.6402
—2.2 —10.6877 —15 -8 405 610 —10.6867
—2.0 —10.8305 —15 -8 404 608 —10.8295
—1.9 —10.8683 —15 -8 404 608 —10.8678
—1.9 —10.9877 —15 -7 403 607 —10.9848
—2.0 —11.1399 —15 -7 402 605 —11.1390
—19 —11.1729 —15 -7 403 605 —11.1719

mean (T— Tg) =+1.241.0 mK
combining the uncertainties: (7— Tg) = + 1.2+ 1.5 mK at t5 = —10.86 °C

(T-Ti)

mK

+3.5
+3.1
+4.5
+3.2
+3.9
+4.4
+5.4
+5.2
+4.1

+4.4
+2.2
+2.9
+2.3
+1.9
+1.3
+3.9
+4.8
+2.9
+4.0

+0.5
+1.6
+2.7
—-0.1
+1.0
+1.0
+0.5
+2.9
+0.9
+1.0



T,/mK T,/mK T;/mK

+6.7
+4.8
+0.0
—-0.3
+0.4
—11
—-0.8
—-1.0
—-0.7
—-0.5
—0.2

+2.2
+2.3
+0.3
+0.9
+0.6
+0.8
+0.8
+0.7
+0.7
+0.8
+0.7
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—1.9
—1.4
+0.1
+0.1
—-0.1
+0.3
+0.2
+0.2
+0.2
+0.1
+0.1

TABLE 19. (continued)

M'(Tip)® (19 March 1982 to 26 March 1982)

d7T/5 min
mK tes/°C
—0.3 0.5775
—-0.7 0.5974
—14 —04138
—1.6 0.0023
—14 —0.0190
—1.8 0.0159
—1.9 —0.0024
—1.7 0.0381
—1.7 0.0184
—1.6 0.0614
—1.7 0.0460

M’(T)/mW

1.360293
1.360701
1.340686
1.348877
1.348459
1.349141
1.348833
1.349583
1.349198
1.350037
1.349780

3M(T) p(T) [D(T)+L(T)]  [F(ea)+s] M'(Tip)
nW nW nW nW mW
—-20 —13 477 721 1.350203
—-20 —13 477 721 1.350214
—-19 —12 470 711 1.350196
—-19 —12 473 715 1.350186
—-19 —12 473 715 1.350190
—-19 —11 473 715 1.350182
—-19 —11 473 715 1.350236
—-19 -—11 473 716 1.350187
—-19 11 473 715 1.350190
—-19 —11 473 716 1.350180
—-19 —11 473 716 1.350226

mean M’(Tip) = 1.350199+ 0.000019 mW
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@ M ’(Tip) was measured before and after the measurements were taken at temperatures of —11, —21, and —31 °C. The
values of M’(Tip) used to evaluate T at these temperatures were the interpolated values between the two.

T/mK Ti/mK Ty/mK

+4.6
+8.2
+8.7
+9.0
—-6.0
—4.9
—4.2
-39
—-3.3

+4.6
+2.4
—4.3
—4.1
+5.1
+5.4
—-6.9
—5.8
—5.3

T, /mK

—6.0
—1.1
+1.6
+19.6
+10.3
+10.2
+17.7
+8.8

+0.7
+0.4
+2.2
+1.9
+0.9
+1.4
+1.4
+1.2
+1.4

+0.4
+0.4
+0.2
+0.2
+0.1
-0.0
+0.1
+0.3
+0.3

T/mK T;/mK

+1.2
+1.4
+1.1
—0.6
+0.9
+1.0
+0.3
+0.7

—-1.0
—1.9
—2.3
—2.3
+14
+1.0
+0.9
+0.8
+0.7

—-0.9
—0.4
+1.2
+1.1
—-1.0
—-1.0
+1.8
+1.5
+1.4

+1.4
+0.2
—-0.4
—4.3
—24
—24
—1.7
—-2.1

temperature : 23 °C (28 September 1982 to 12 October 1982)

d7/5 min IMI(Ty p(T) [D(T)+L(T)]  [Fle,a)+s] M'(Tip)
mK tes/°C  M’(T)/mW  aW nW nW nW mW
—-0.6 1.6132 1.380935 —20 -3 484 732 1.350151
+0.2 1.6323 1.381322 —20 -3 484 732 1.350155
+0.3 2.1514 1.391779 —20 -3 487 738 1.350 144
+0.3 2.1901 1.392564 —20 -3 488 738 1.350146
—2.8 1.6271 1.381177 —20 -3 484 732 1.350115
—2.7 1.5672 1.379991 —20 -3 484 732 1.350133
—2.5 1.3808 1.376254 —20 -3 482 730 1.350137
—24 1.3418 1.375472 —20 -3 482 729 1.350137
—24  1.2945 1.374536 —21 -3 482 729 1.350147
mean M'(Tip) = 1.35014140.000012 mW
t/°C
—1.1 22.6429 1.854533 —30 -7 645 983 22.6336
—1.6 22.6408 1.854 556 -31 -7 645 983 22.6345
—3.0 224665 1.850192 —-31 -7 643 981 22.4603
—3.0 22.4201 1.849073 —31 -7 643 980 22.4156
—0.9 22.6040 1.853672 —-31 -7 644 983 22.5992
—0.8 226162 1.853982 —32 -7 644 983 22.6115
—3.6 23,5170 1.876640 —32 -7 652 995 23.5111
—34 234478 1.874909 —32 -7 651 994 23.4426
—3.2 233753 1.873071 —31 -7 651 993 23.3700
mean (T— Tg) = —5.8+1.5mK
combining the uncertainties: (T— Tgg) = —5.8+ 1.6 mK at £, = 22.86 °C
temperature: 12 °G and 21 °C (25 May 1982 to 25 June 1982)
d7/5 min SM(T) p(T) [D(T)+L(T)] [F(e, a) +5] M’ (Tip)
mK  4/°C M’ (T)/mW aW nW nW nW mW
—2.2 —1.1440 1.326265 +12 —6 465 703 1.350109
—1.6 —1.2266 1.324671 +12 —6 465 702 1.350126
—09 —1.2788 1.323656 +12 —6 465 702 1.350128
+2.6 —0.6360 1.336232 +12 —5 469 708 1.350142
+0.7 —0.5742 1.337434 +12 -5 469 709 1.350132
+0.5 —0.5718 1.337478 +12 —4 469 709 1.350129
+04 —0.7229 1.334516 +12 —4 468 708 1.350132
+04 —0.7288 1.334369 +12 —4 468 707 1.350101

mean M’(T;p)® = 1.350 125+ 0.000013 mW

(T—T4
mK

-9.3
—6.3
—6.2
—4.5
—4.8
—4.7
—-5.9
—5.1
-5.3




172

T,/mK T;/mK T;/mK

+17.6
+15.0
+14.4
+13.9
+13.8
+13.9
+13.5
+13.4
+13.7
+13.5

+17.6
+10.2
+10.2
+15.5
+15.3
+23.2
+22.9
+22.1
+21.4

+0.3
+1.5
+9.7
+9.8
+13.0
+12.2
+11.9

+0.1
+0.3
+0.8
+0.8
+0.7
+0.8
+0.8
+0.8
+0.6
+0.9

+0.4
+0.4
+0.4
—-0.1
+0.2
+0.1
+0.2
+0.2
+0.3

+1.9
+1.7
+2.1
+2.0
+1.9
+1.8
+1.6

—4.0
—-3.4
—-34
—-3.2
-3.2
-3.3
-3.1
-3.1
-3.2
—32

—49
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TABLE 19. (continued)

temperature : 12 °C and 21 °C (25 May 1982 to 25 June 1982)

dT/5 min SM'(T) p(T) [D(T)+L(T)] [F(e,a)+5]

mK ts/°C M'(T)/mW oW nW nW nW
+1.8 11.9589 1.600836 +16 —4 558 849
+1.4 11.9837 1.601406 +16 —4 558 849
+1.3 11.9665 1.601031 +16 -3 558 849
+1.1  11.9805 1.601 356 + 16 -3 558 849
+1.2 12.1965 1.606 184 +15 -2 560 852
+1.1  12.2126 1.606 566 +16 -2 560 852
+1.1 12.2316 1.606 989 +16 —2 560 852
+1.1  12.2426 1.607273 +15 -2 561 852
+1.1  12.2064 1.606408 +16 -2 560 852
+1.0 122171 1.606 656 +15 -2 560 852

mean (T— Tg) = —3.240.7 mK
combining the uncertainties: (T— Tgg) = —3.2+ 1.1 mK at g = 12.12 °C

—-0.5 20.8500 1.810021 +17 -5 630 960
+0.2 20.6050 1.804000 +19 -5 627 956
+0.3  20.5774 1.803297 +17 -5 627 956
+1.3  20.4751 1.800804 +17 -5 626 955
+1.2 20.4871 1.801119 +17 -5 626 955
+2.9 20.7304 1.807107 +18 -5 629 958
+2.8 20.7939 1.808653 +18 -5 629 959
+2.6 21.1089 1.816412 +18 -5 631 963
+2.5 21.1583 1.817617 +18 -5 632 964

mean (T— Tyy) = —7.040.6 mK

combining the uncertainties: (T— Tgg) = —7.0+1.0 mK at £g = 20.75 °C

—14 —13873 1.321589 +12 -2 464 701
—1.0 —14406 1.320552 +12 -2 463 700
+06 —1.5873 1.317708 +12 -2 462 699
+0.6 —1.5870 1.317713 +12 -2 462 699
+14 —1.7368 1.314848 +12 -2 461 697
+1.2 —1.7322 1.314912 +12 -2 461 697
+11 —1.7175 1315183 +12 -2 461 697

mean M’(T;p)® = 1.35019040.000016 mW

t/°C

11.9553
11.9807
11.9638
11.9783
12.1925
12.2095
12.2282
12.2408
12.2023
12.2132

20.8430
20.5982
20.5695
20.4678
20.4806
20.7243
20.7871
21.1017
21.1505

M’ (Tip)
mW

1.350179
1.350178
1.350183
1.350184
1.350225
1.350198
1.350185

(T_ Tes)

mK
—3.6

® M’(T;p) was measured before and after the measurements were taken at temperatures 12 °C and 21 °C. The values of
M’(Tip) used to evaluate 7" at these temperatures were interpolated values between the two.

T,/mK T;/mK T,/mK

+14.1
—-2.1
—2.2
—24
—1.6
—1.2
—-0.9
—2.1
—1.4

+14
+1.2
+1.2
+1.0
+1.1
+1.2
+1.2
+1.1
+1.3

—3.4
+0.4
+0.4
+0.6
+0.3
+0.2
+0.2
+0.4
+0.3

temperature : 40 °C (15 October 1982 to 28 October 1982)

d7/5 min M’ (T) p(T) [D(T)+L(T)] [F(e, a)+5] M’ (Tip)
mK ts/°C  M'(T)/mW nW nW nW nW mW
+1.3 —04119 1.340639 —18 -5 470 711 1.350118
—1.9 —0.1699 1.345405 —19 —4 472 713 1.350121
—1.9 —0.1969 1.344879 —18 —4 472 713 1.350129
—2.0 —0.2228 1.344377 —-19 —4 472 713 1.350135
—1.8 —0.2726 1.343392 —18 -3 471 712 1.350133
—1.8 —0.2993 1.342879 —19 -3 471 712 1.350145
—1.6 —0.3266 1.342349 —19 -3 471 712 1.350 151
—1.9 —-0.2852 1.343145 —19 -3 471 712 1.350134
—1.8 —0.3205 1.342457 —19 -3 471 712 1.350 140

mean M’(Tip) = 1.35013440.000011 mW
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TABLE 19. (continued)

temperature : 40 °C (15 October 1982 to 28 October 1982)

dT/5 min SM'(T) p(T) [D(T)+L(T)]  [Fle,a)+s] (T—T)
T,/mK T;/mK T;/mK mK tes/°C M'(T)/mW  nW nW nW nW t/°C mK
+04 +19 —-01 —23 39.1421 2.304239 —42 —13 797 1222 39.1322 —9.9
+3.0 +1.7 —-08 —17 39.1247 2.303756 —42 —13 797 1221 39.1158 —8.8
+04 +16 —-01 —23 39.9242 2.327445 —42 —12 805 1234 39.9156 —8.6
+13 +19 —-04 —24 39.8782 2.326088 —42 —12 804 1233 39.8699 —8.3
+19 +19 —-05 —20 39.8497 2.325214 —42 —12 805 1233 39.8405 —9.2
—-33 +22 407 —-32 399256 2.327486 —42 —12 805 1234 39.9170 —8.7
—-19 +22 403 —29 39.8636 2.325616 —42 —12 804 1233 39.854 1 —9.5
—-20 +21 403 —29 39.7920 2.323484 —42 —12 804 1232 39.7823 —9.6
—-1.5 +20 +02 —28 39.7492 2322238 —42 —12 804 1231 39.7403 —8.8

mean (T— Tg) =—9.110.6 mK
combining the uncertainties: (7— Tgg) = —9.1+0.8 mK at £ = 39.69 °C

temperature: 54 °C (29 September 1981 to 23 October 1981)

dT/5 min SM'(T) p(T) [D(T)+L(T)] [F(e, a) +5] M’ (Tip)
T,/mK T;/mK T,/mK mK tes/°C M(T)/mW  nW nW nW nW mW
-31 +20 +05 —22 —1.0543 1.328054 —18 -5 466 704 1.350120
—-27 419 +05 —20 —1.1436 1.326304 —-18 -5 465 703 1.350112
-34 +18 +06 —21 —1.1769 1.325675 —18 -5 465 703 1.350134
—-20 +19 +02 —19 —1.4966 1.319426 —18 —4 463 700 1.350108
—-1.7 +19 402 —-20 —1.5242 1.318925 —-18 —4 463 699 1.350143
+38 +11 —-09 —-08 —1.3841 1.321617 -19 -4 464 701 1.350109
+09 +20 —-04 —14 —1.2390 1.324432 —18 —4 465 702 1.350101
+16 +16 —-06 —12 —1.2835 1.323592 —18 —4 465 702 1.350130
+10 +1.7 —-04 —13 —1.2437 1.324364 —18 —4 465 702 1.350125
+05 +18 —-03 —14 —1.2148 1.324927 —18 —4 465 702 1.350125
mean M'(Tip) = 1.350121+0.000013 mW
(T—Ts)
t/°C mK
+06 +29 —04 —29 540952 2.778215 —-56 —50 959 1473 54.0824 —12.8
—-04 +31 —-0.1 —32 542384  2.783092 —56 —42 960 1475 54.2261 —12.3
+09 +31 —-05 —29 541526  2.780150 —55 —42 959 1474 54.1396 —13.0
—-1.7 435 +01 —33 541344 2779515 —58 —32 959 1474 54.1211 —13.3
-31 429 +06 —33 536710 2.763824 -52 —-20 954 1465 53.6588 —12.3
—08 +30 —-00 —32 536895 2764416 —54 —18 954 1466 53.6763 —13.3
+09 +29 —-04 —29 536108 2761749 —56 —18 953 1464 53.5974 —13.5
—-21 433 +02 —34 536916 2.764509 -53 —16 954 1466 53.6791 —12.5
—-02 +30 -02 -—3.0 536101 2761716 —-56 —15 953 1464 53.5965 —13.6
-01 +31 —-03 —3.0 535767 2760572 -52 —13 953 1464 53.5628 —13.9

mean (T — Tg) = —13.0+0.6 mK
combining the uncertainties: (7— Tgg) = —13.0+ 1.0 mK at {5 = 53.85 °C

temperature : 64 °C (1 November 1982 to 12 November 1982)

d7T/5 min SM'(T) p(T) [D(T)+L(T))] [F(e,a)+s] M'(Tip)

T,/mK T;/mK T,/mK mK tes/°C  M'(T)/mW  aW nW nW nW mW
—11.0 +1.1 +26 —37 —1.4436 1.320474 —18 —4 463 700 1.350125
—86 +0.8 +2.1 —-32 —1.5077 1.319247 —18 —4 463 699 1.350144
—60 +09 +14 —27 —1.5829 1.317790 —18 —4 462 699 1.350148
+14 +17 —-05 —12 —14560 1.320263 —18 -3 463 700 1.350157
+21 +15 —-06 —1.0 —14667 1.320051 —18 -3 463 700 1.350152
+25 +14 —0.7 —1.1 —14762 1.319878 —18 -3 463 700 1.350 164
+29 +14 —-08 —-09 —1.3485 1.322356 —18 -3 464 701 1.350159
+2.7 415 —-07 —-09 —1.3486 1.322350 —18 -3 464 701 1.350154
+16 +16 —-05 —1.1 —1.2176 1.324 897 —18 -3 465 702 1.350151
+21 +1.5 —-06 —1.1 —1.2337 1.324579 —18 -3 465 702 1.350147

mean M'(Tip) = 1.35015040.000011 mW
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T,/mK T,/mK T,/mK

—2.2
—0.6
-0.7
+0.1

T;/mK

—-1.6
+17.0
+17.7

—-2.1
—2.4
—1.4

+8.0
+11.3
+11.3
+0.4
-3.0
—2.6
+2.3
+3.2
+3.7
+2.9

T,/mK

—6.0
—-1.1
+1.6
+19.6
+10.3
+10.2
+7.7
+8.8

+3.4
+3.1
+3.2
+3.3
+3.2
+3.2
+3.3
+3.5
+35

Ty/mK T/mK

+1.2
+0.3
-0.0
+0.2
+0.5
+0.4
+0.3

+2.6
+2.0
+0.6
+2.6
+3.0
+2.5
+2.7
+23
+2.7
+2.4

Ty/mK T,/mK

+1.2
+1.4
+1.1
—0.6
+0.9
+1.0
+0.3
+0.7

+0.3
-0.1
-0.1
-0.3
—-04
+0.0
-0.1
+0.3
—-0.0

+0.4
-39
—4.0
+0.5
+0.6
+0.6
+0.5

—1.9
—2.6
—24
—0.1
+0.6
+0.6
—0.6
—-0.8
—1.0
—0.7

+1.4
+0.2
—0.4
—4.3
—2.4
—24
—1.7
—-2.1
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temperature: 64 °C (1 November 1982 to 12 November 1982)

TABLE 19. (continued)

mean M’(Tip) = 1.350125+0.000013 mW

d7/5 min SM'(T) p(T) [D(T)+L(T))] [F(e, a) +5]
mK tes/°C  M'(T)/mW oW nW nW nW t/°C
—3.7 63.7392  3.120307 —66 —24 1076 1654 63.7203
—3.6 63.6814  3.118178 —67 —23 1075 1653 63.6628
—3.5 63.7314  3.120051 —65 —20 1076 1654 63.7135
—3.4 63.6837  3.118263 —-65 —19 1075 1653 63.6653
—34 63.6394  3.116638 —66 —19 1075 1652 63.6214
—3.6 63.6235 3.116056 —67 —18 1075 1652 63.6057
—34 635891  3.114750 —66 —18 1074 1651 63.5704
—3.8 63.6377 3.116548 —66 —15 1075 1652 63.6191
—3.6 63.5883  3.114704 —66 —15 1074 1651 63.5692
mean (T— Tgg) = —18.44+0.5 mK
combining the uncertainties: (7T— Tgs) = —18.4+0.8 mK at £, = 63.66 °C
temperature: 71 °C (3 November 1981 to 20 November 1981)
d7/5 min IM(T) p(T) [D(T)+L(T)]  [Fle,a)+s] M'(Tip)
mK tss/°C  M'(T)/mW oW nW nW nW mW
—15 —1.2276 1.324654 —-13 -2 465 702 1.350107
+2.0 —0.7303  1.334409 —13 -2 468 707 1.350146
+2.1 —0.6310 1.336378 -14 -2 469 709 1.350168
—1.9 —0.4522 1.339830 —-14 -2 470 710 1.350110
—2.0 —0.5006 1.338858 —-13 =2 470 710 1.350088
—2.0 —0.6952 1.335029 —14 -2 468 708 1.350078
—1.9 —0.7491 1.333996 —-13 -2 468 707 1.350100
mean M'(Tip) = 1.3501144+0.000032 mW
t/°C
—1.9 70.6622  3.384768 —64 —26 1167 1794 70.6444
—1.5 70.7035  3.386394 —66 —26 1167 1795 70.6856
—1.5 71.2859  3.409360 —67 —25 1175 1808 71.267 1
—3.5 712613  3.408350 —66 —24 1174 1807 71.2417
—4.1 71.1471  3.403821 —65 —22 1173 1805 71.1273
—3.9 71.0821  3.401180 —64 —22 1172 1803 71.0605
—3.0 70.7492  3.388109 —60 —19 1168 1796 70.7295
—3.1 70.7213  3.387084 —61  —19 1167 1796 70.7034
—2.7 70.6912  3.385860 —61  —19 1167 1795 70.6724
—2.7 70.7689  3.388913 —58 —18 1168 1797 70.7500
mean (T— Tg) = —19.1+1.2 mK
combining the uncertainties: (T— Tge) = —19.14+2.4 mK at £ = 70.91 °C
temperature: 81 °C. (13 May 1982 to 28 May 1982)
d7T/5 min SM'(T) p(T) [D(T)+L(T)] [F(e, a)+5] M’ (Tip)
mK ts/°C  M'(T)/mW nW nW nW nW mW
—2.2 —1.1440 1.326265 +12 -6 465 703 1.350109
—1.6 —1.2266 1.324671 +12 -6 465 702 1.350126
—0.9 —1.2788 1.323656 +12 -6 465 702 1.350128
+2.6 —0.6360 1.336232 +12 -5 469 708 1.350142
+0.7 —0.5742 1.337434 +12 -5 469 709 1.350132
+0.5 —0.5718 1.337478 +12 —4 469 709 1.350129
+04 —0.7229 1.334516 +12 —4 468 708 1.350132
+04 —0.7288 1.334369 +12 -4 468 707 1.350101

—19.1

(T-Ti)
mK

—17.8
—17.9
—18.8
—19.7
—-19.9
—21.6
—19.7
—17.8
—18.8
—18.9



T;/mK

+8.5

+7.2
+14.3
+13.4
+30.6
+27.3
+27.0
+28.1
+27.2
+27.9

T,/mK

+2.2
+10.2
+10.7
+9.0
+9.2
+6.9
+6.6
+17.3
+7.2

+30.6

+6.9

+8.5
+10.9
+12.1
+14.0
+15.4
+24.8
+24.2
+12.9
+15.7

T /mK

—-5.2
+10.7
+10.8

+9.2

+9.9
+5.3
+5.9
+4.9
+4.9

T,/mK T;/mK

+4.3
+4.9
+4.3
+4.5
+2.4
+2.5
+2.4
+2.6
+2.7
+2.4

T;/mK T/mK

+1.1
+0.1
+0.1
+0.5
+0.4
+0.6
+0.7
+0.7
+0.6

+2.4
+4.3
+4.3
+3.5
+3.7
+3.1
+3.3
+3.3
+3.3
+3.5
+3.6

T;/mK T;/mK

+0.7
+1.1
+1.0
+0.8
+1.5
+0.8
+0.9
+1.0
+0.8

—-2.3
—2.1
-38
—-3.6
—-7.2
—6.4
—-6.3
—6.7
—6.4
—6.5

—-0.5
—-23
—2.4
—2.1
—2.1
—-1.6
—-1.6
—1.7
—-1.6

-7.2
-1.9
—-2.3
—2.7
-3.0
—3.4
—-3.7
—5.9
—-5.8
—-3.2
—3.8

+1.2
—2.6
—2.6
—2.2
—2.5
—-1.2
—1.4

-1.2 .

—1.1
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dT/5 min
mK

—2.3
—2.2
—-1.0
—1.1
+2.6
+19
+1.8
+2.1
+1.8
+1.9

TABLE 19. (continued)

temperature: 81 °C (13 May 1982 to 28 May 1982)

tss/°C M'(T)/mW

80.9829
80.9223
80.2525
80.2133
80.4978
80.6664
80.6858
80.5333
80.5466
80.3512

3.809587
3.807064
3.778132
3.776513
3.788841
3.796064
3.796835
3.790293
3.790824
3.782415

combining the uncertainties: (7T — Tgg) = —22.84+2.0 mK at #; = 80.57 °C

tes/°CG  M'(T)/mW

1.342603
1.343326
1.343862
1.345299
1.345614
1.344678
1.344621
1.344149
1.344130

mean M’ (Tip) =

dT/5 min
mK
—-09 —0.3099
+0.8 —0.2725
+0.5 —0.2470
+04 —0.1741
+0.3 —0.1581
—0.1 —0.2039
—0.2 —0.2080
+0.0 —0.2329
—0.1 —0.2335
+1.7  91.2116
—2.8 91.9544
—2.6 91.9065
—2.2  91.8907
—1.9 91.8542
—1.2  91.4189
—1.2 91.3864
+0.7 91.6591
+0.6 91.6897
—1.5 91.4858
—1.2  91.4220

4.269123
4.304172
4.301849
4.301095
4.299371
4.278959
4.277377
4.290142
4.291490
4.281897
4.278870

combining the uncertainties: (7T— Tgg) = —24.3+ 1.9 mK at £, = 91.63 °C

s/°C  M'(T)/mW

1.328136
1.329333
1.329833
1.334609
1.334920
1.338675
1.338552
1.339730

SM(T) p(T) [D(T)+L(T)]  [F(e,a)+s]
nW nW nW nW t/°C
+16 —36 1312 2020 80.9594
+14 -35 1311 2018 80.9007
+22 32 1301 2003 80.2264
+21 31 1301 2002 80.1885
+47 =27 1305 2009 80.4772
+53 =27 1308 2013 80.6458
+52 27 1308 2013 80.6637
+59 27 1306 2010 80.5114
+60 27 1306 2010 80.5238
+64 27 1303 2005 80.3276
mean (T— Tgg) = —22.841.8 mK
temperature: 92 °C. (25 November 1981 to 11 December 1981)
3M(T) p(T) [D(T)+L(T)]  [Fle,a)+s] M’ (Tip)
nW nW nW nW mW
-3 -7 471 712 1.350089
-3 -6 471 712 1.350078
-3 —6 471 712 1.350111
-2 -5 472 713 1.350114
-2 -5 472 713 1.350113
-3 —4 472 713 1.350079
-3 —4 472 713 1.350104
-3 —4 472 713 1.350122
-2 —4 472 713 1.350115
1.350103+0.000017 mW
t/°C
=75 —43 1471 2263 91.1859
—62 —40 1482 2282 91.9318
—-62 -39 1482 2281 91.8825
—-51 37 1481 2280 91.8668
—-53 37 1481 2279 91.8302
—24 32 1474 2269 91.3969
—-20 —32 1474 2268 91.3633
—14 32 1478 2275 91.6351
—-15 —32 1479 2275 91.6637
-7 =31 1475 2270 91.4599
-8 —32 1474 2269 91.3954
mean (T— Tg) = —24.3+1.5mK
temperature: 102 °C (8 December 1982 to 21 December 1982)
3M(T) p(T) [D(T)+L(T)]  [F(e,a)+s] M (Tip)
nW nW nW nW mW
-6 -7 466 704 1.350059
-6 -7 466 705 1.350073
—6 -7 466 705 1.350094
-5 -6 468 708 1.350080
-5 -6 468 708 1.350063
—6 —4 470 710 1.350092
-5 —4 470 710 1.350091
—6 —4 470 710 1.350082
-5 —4 470 710 1.350079

dT/5 min
mK
—2.5 —1.0465
+0.6 —0.9859
+0.6 —0.9614
+0.3 —0.7165
+0.3 —0.6998
—0.4 —0.5099
—-0.3 —0.5160
—0.6 —0.4556
—0.6 —04712

1.339421

mean M’(Tip) = 1.350079+0.000012 mW
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(T—Te)
mK

—23.6
—21.6
—26.1
—24.7
—20.5
—20.6
—22.1
—21.9
—22.8
—23.6

(T—T)

mK

—25.7
—22.6
—24.0
—23.9
—24.0
—21.9
—23.1
—24.0
—26.0
—25.9
—26.7
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Ti/mK

+5.1
+6.2
+7.1
+5.0
+7.6
+17.7
+9.0
+9.8
+10.3

T/mK T;/mK T;/mK

+3.8
+7.0
+6.3
+5.8
+6.3
+6.2
+0.9
+0.9
+2.0
+2.3

+6.1
+6.7
+7.2
+7.2
+5.1
+5.5
+5.7
+5.0
+5.2

T,/mK T;/mK

+2.7
+2.9
+2.7
+2.8
+2.9
+2.6
+2.7
+2.9
+2.9

+1.6
+1.9
+1.9
+1.9
+1.9
+18
+1.2
+1.3
+1.4
+1.5

+2.4
+2.6
+2.7
+2.7
+2.5
+2.5
+2.5
+2.5
+2.3

—1.1
-14
—-1.6
—-1.0
—-1.8
—1.7
—-2.0
—2.2
—2.4

—-0.2
—-0.3
—0.2
—-0.2
—-0.2
—-0.2
—-0.1
—-0.1
-0.1
—-0.1
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temperature : 102 °C. (8 December 1982 to 21 December 1982)

TaBLE 19. (continued)

(T—Tow)

dT/5 min dMI(T) p(T) [D(T)+L(T)]  [Flea)+s]
mK  f,/°C M(T)/mW nW nW nW nW t/°C
—3.6 102.2242  4.808957 —-96 —63 1657 2550 102.1956
—3.6 102.1988 4.807618 —96 —62 1657 2549 102.1695
—3.2 102.1316  4.804255 —-97 —62 1656 2547 102.1038
—3.6 102.1385 4.804475 —74 —58 1656 2547 102.1087
—3.4 102.0493 4.799856 —74 —58 1654 2545 102.0184
—3.1 102.0075 4.797739 —76 —58 1653 2544 101.9770
—2.8 101.8864 4.791526 —56 —53 1651 2540 101.8560
—2.8 101.8294 4.788613 —56 —53 1651 2539 101.7990
—2.7 101.7722 4.785651 —-57 —53 1650 2537 101.7410
mean (T— Tgg) = —29.9+1.1 mK
combining the uncertainties: (T— Tgg) = —29.9+ 1.4 mK at {5 = 102.03 °C
TasBLE 20
temperature : 40 °C. (10 October 1983 to 26 October 1983)
d7/5 min SM(T) p(T) [D(T)+L(T)] [F(e, a) +5] M’(Tiy)
mK ts/°C  M’(T)/mW  nW oW nW nW mW
-0.3 0.3703  0.211485 —1 —1 82 40 0.210492
+0.2 0.3709  0.211483 +0 -1 82 40 0.210490
+0.1 0.7618  0.212693 -1 +0 82 40 0.210487
—-0.0 0.7661  0.212708 —1 +0 82 40 0.210489
+0.1 0.9073  0.213166 —1 +0 82 41 0.210508
+0.0 0.9134  0.213170 -1 +0 82 41 0.210493
—0.8 —0.0842 0.210112 +0 +0 81 40 0.210523
—09 —0.1169 0.209992 —1 +0 81 40 0.210503
—06 —0.0814 0.210116 -1 +0 81 40 0.210517
—06 —0.1024 0.210021 —1 +0 81 40 0.210487
mean M'(Tip) = 0.210499 +0.000013 mW
t/°C
—0.4 40.2494  0.364470 -1 -3 134 69 40.2358
—0.3 40.2382  0.364429 —1 -3 134 69 40.2270
—0.2  40.2201 0.364 349 —1 -3 134 69 40.2099
—0.2 40.2147  0.364325 -1 -3 134 69 40.2047
—0.6 40.2859  0.364653 +0 -3 134 69 40.2755
—0.5 402691  0.364598 -1 -3 134 69 40.2634
—0.5 40.2566  0.364518 —1 -2 134 69 40.2463
—0.5 40.1373  0.363974 +0 -2 133 69 40.1296
—0.6 40.1195  0.363886 -1 -2 133 69 40.1104

mean (T— Tge) = —9.8+2.2mK
combining the uncertainties: (T— Tgg) = —9.8 5.4 mK at ¢ = 40.22 °C

mK

—28.5
—29.3
—-27.7
—29.9
—30.8
—30.5
—30.4
—30.4
—-31.2

(T—Ta)
mK

—13.5
—11.2
—10.2
—10.0
—10.4
—5.6
—-10.3
=77
-9.1

Kemp et al. (1984) has given values of (T— Tg,) from 30 K up to 280 K. Their preliminary
results above 233 K, also shown in figure 39, are clearly in very good agreement with our radio-

metric values. This good agreement between the radiometric and gas thermometric values for
(T— T,s) not only confirms the discovery by Guildner & Edsinger that substantial differences
exist between Ty, and thermodynamic temperatures in this range, but also gives us confidence
that the values of (7— Ty,) resulting from all of the work are substantially correct. It also
shows that total radiation thermometry can equal the accuracy of the best gas thermometry.

The agreement between our values of 7" and those of gas thermometry can also be taken
as providing by far the most sensitive test yet, to a few parts in 10°, of the fourth-power

dependency of radiant power upon 7.
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(e) Future improvements in radiometric measurements of o and T

In the light of the experience gained during the course of the present work, it is possible to
foresee ways in which significant improvements in accuracy might be achieved. In the absolute
measurement of thermal radiative power, that is to say in the determination of &, the most
significant uncertainties (see table 13) are those related to the emissivity and absorptivity of
the radiator-calorimeter, the measurement of g, diffraction and scattering. Significant
improvements have been made in the production of low-reflectance surfaces since this work
was begun (Smith 1984; Pompea et al. 1983). It should now be possible to design a
radiator—calorimeter assembly for which the radiation transfer function departs from unity by
less than one fifth of that used here. In addition, the knowledge of the optical properties of
these surfaces should be better than that for 3M Nextel. Overall, taking into account also minor
changes in calorimeter design, the uncertainty in the radiation transfer function might be
expected to reduce by nearly a factor of ten. Modifications to the design of the apertures, in
particular an increase in the aperture diameters and separation and a significant increase in
the angle of the conical entrance to the aperture, and the experience gained in the metrology
of the radiation trap should all contribute to a reduction in the uncertainties due to diffraction
and scattering and the measurement of g by a factor of about four. It should be remembered
that the random scatter of the results is already quite small. In the best series of measurements
of o (see table 17) the standard deviation of the measured values is equivalent to only 9 parts
in 108 in the measured power.

If all of these improvements could be made, an overall uncertainty in the determination of
o approaching 2 parts in 10° could be expected. This would lead to an uncertainty in the
Boltzmann constant of 5 parts in 10%, which is better than can be achieved by any other method
at present. Similar improvements could also be expected in the measurement of thermodynamic
temperature. In particular, by taking further precautions with regard to temperature
uniformity in the radiator, uncertainties in the measured values of 7" might be expected to fall
to a few tenths of a millikelvin. To achieve this improvement in accuracy in 7, some reduction
would be required in the random scatter of the measured values. The best that has been
achieved here can be found at three temperatures, namely 40, 60 and —40 °C, where the
standard deviation of the twenty measured values of 7" was 0.8 mK. This is equivalent to a
standard deviation in the measurements of thermal radiative power of 1 part in 10%, very similar
to that of the best measurements of 0. We believe that most of this scatter comes from the
measurement of the resistance of the germanium thermometer on the calorimeter. Improvements
in technique here should lead to a reduction in this scatter of more than a factor of ten. If such
reduction in uncertainty in the measured values of 7 could be obtained, we would find that
the uncertainty in the measured values of (7— Tg,) would be limited by the reproducibility
and non-uniqueness of Tg, rather than by uncertainties in 7.

The authors are very pleased to acknowledge the part played in the early stages of this work
by John Compton, without whose contribution it is unlikely that the cryogenic radiometer
would have worked so well. Among those who took part in the construction of the radiometer
in the NPL workshops, we must acknowledge especially Ernie Pinn (who made the apertures)
and Eric Charles and Mick Rogers. For the measurements of the dimensions of the radiation
trap and apertures we are grateful for the help given by Stan Poole, Gary Severn,
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we must mention the measurements of the thermal expansion of Cu-Be, for which we thank
Clayton Swenson of Iowa State University; the reflectance of the model of the calorimeter,
by Edward Zalewski of the National Bureau of Standards; the reflectance of Cu-Be samples,
by George Freeman of NPL; and the calibrations of the platinum resistance thermometers by
Maurice Chattle of NPL. Christine Barker assisted in many of the measurements made with
the radiometer. In addition, we are grateful to Ronald Bedford of the National Research
Council and Chu Zaixiang of the Harbin Institute of Technology, who made calculations for
us of the absorptivity of the calorimeter. We must also acknowledge the help and advice given
on many occasions by members of the NPL Temperature Section and, finally, Peter Coates,
John Cox, Ralph Hudson, Jérge Miiller, John Redgrove and Richard Rusby, who read the
manuscript of this article and made many helpful comments.

One of us (T.J.Q.) wishes also to thank the Directors of BIPM and NPL for encouraging
him to continue with this work after his move to BIPM and the Director of BIPM for facilities
provided there.

ApPPENDIX A. DERIVATION OF AN EXPRESSION FOR 71(x)

In this Appendix we derive an expression for the temperature, 7(x), of an element on the
cylindrical wall of the radiator a distance x from the aperture (see figure A 1). In doing so,
we assume that the radiator is drifting in temperature at a rate 0 7/0¢, which is small, constant
over the period of interest and uniform over the whole of the radiator. This corresponds with
that observed in practice. It is also assumed that, because of efficient external radiation
screening, the only significant net heat loss from the cylindrical and conical parts of the radiator
takes place by thermal radiation through the aperture.

Q(e,7) +Qc, b)

L >

FiGUrE A 1. Schematic drawing of radiator showing parameters used in the derivation
of the heat-flow equation.
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The net heat loss from an element of the cylindrical wall of the radiator depends upon the
solid angle subtended at the element by the aperture and by its images in the reflecting conical
entrance to the aperture and in the cylindrical mirror attached to the top of the radiator. In
addition, we must take into account the absorption of the cold surfaces of the aperture and its
surroundings, which result from the presence of the condensed gas. This absorption is estimated
to be 0.25 on the basis of diffraction experiments described in §7. The overall heat loss from
these lower regions of the radiator is, therefore, considerably larger than would be expected
by taking simply the direct heat loss through the aperture, and it is evaluated in the following
way.

We take first the large pair of apertures, for which the radius of the lower aperture
Ry, = 0.9 cm and the angle of the entrance cone is 60°. The radius of the virtual image of the
aperture in the entrance cone is 1.7 cm, which we denote by Ry ;. This image is itself visible
by reflection in the cylindrical mirror of radius Ry at the top of the radiator (see figure A 1).
The shape of this reflected image varies when viewed from elements over the length of the
cylindrical part of the radiator from x = 23 cm to x = 60 cm, but direct observation allowed
us to estimate an average area of about one half that of the virtual image of the aperture in
the cone. Thus we assign an effective radius Ry, to this image, given by R, = R;,/v/2.
Absorption also takes place in the annular region between the outside rim of the aperture and
its housing, indicated by N in figure 12. Since about four reflections are required before a ray
entering this region can return to the radiator, a surface reflectance of 0.75 leads to an effective
absorptance of 0.7. This annular region is equivalent to a completely absorbing disc of radius
R;; = 1 cm. The remaining cold surfaces, in which an image of the aperture is not seen, are
taken to have an absorption of 0.25, and to have a surface area equivalent to a disc of radius
Ry less the sum of the areas of all the aperture images and annular ring. We can thus deduce
the radius, R, of an absorbing disc having an absorption equivalent to the sum of the various
components described above:

R2 = 0.25R + (1—0.25) (R%, +R3,+R2,). (A1)

From this we find that R, = 2.4 cm, which we subsequently use as an effective radius of the
aperture and with which we associate an uncertainty of 59, (not a significant contributing
uncertainty in the final result).

For the small pair of apertures, the radius of the equivalent absorbing disc is rather smaller.
The cone angle of the aperture is 90°, with the result that there is no virtual image of the
aperture visible in the cone, so Ry, = R, Taking R; = 0.5 cm, we find that R, = 1.7 cm.

Having found an expression for the effective area of the aperture viewed from elements along
the cylindrical wall and on the surface of the cone, we can write down an expression for the
radiant heat loss, 8Q(xr), from a cylindrical element a distance x from the aperture (see
figure A 1). We show in (C 4) of Appendix C that the fraction dFy_; of the thermal radiation
emitted by a cylindrical element that reaches a coaxial disc of radius R, at a distance x from the
element is given by

dFy,_;, = xR2H/(x®+ H?)®. (A2)

Since here x is always much greater than H, the radius of the cylinder, we can approximate
this by
dFy_;, =~ RZH/x3. (A3)
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Thus the heat loss from the cylindrical element through the aperture R, is given by
8Q (x,7) = 2me R2 H20 T*x 3 dx, (A 4)

where ¢ is the emittance of the surface and T is its temperature.
The heat required to change the temperature of the element at a rate d 7/t we call 8 (x, /),
and it is given by
8Q(x,h) = 2nHAH ps(0T/dt) dx. (A 5)

The radiant heat loss from the whole of the cone, Q(c,7), is given by
Qle,r) = TH2R2 o T*/L2, (A 6)
The heat required to change the temperature of the cone at a rate d77/0¢ is given by
Q(e, h) = msdT/ot, (A7)

where m is the mass of the cone. The heat balance equation for the cylindrical element dx is

QI_QZ = SQ(JC, T) +8Q(xs /l)) (A 8)
where Q,=—«kAdT/ox
. oT 0T
and Q2=—KA (-a—ﬁ'wdx),

in which « is the thermal conductivity of the material and 4 is the cross sectional area of the
element given by 4 = 2nH AH. Thus

Q,— @, = 2nH AH k(9 T/dx?) dx, (A 9)

so that combining (A 8) and (A 9) and substituting for 8¢ (x,7) and 8¢ (x, %) from (A 4) and
(A 5) and simplifying we find

*T _ eHR}o T4i psoT

Ery Y/ A T (A 10)
. . 2T N
This we write as P F+J(t)’ (A 11)
where N=eHR:oT*/k AH
_psor
and J@) = PRETE

remembering that 077/0t is independent of x and ¢. Integrating with respect to x, we have
07 N
Py 2x2+Jx+cl. (A 12)

The first boundary condition is that at x = L we have

T  _ —[Qen+d(h)]

0 e, kA ’
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so substituting for (c,7) and Q(c, k) from (A 6) and (A 7) and putting m/2nHAHp = ¢, we

find
%%' x=L=——2-%;—cJ. (A 13)
Hence, substituting into (A 12), we find
¢ =—J(c+L), (A 14)
so that (A 12) becomes
0T/0x = — (N/2x®) +Jx—J(c+L). (A 15)
Integrating a second time with respect to x we find
T = (N/2x)+LJx*—J(c+ L) x+c,. - (A 16)
The second boundary condition is that for x = M
T(M,t) =T, (A17)

so that (A 16) becomes
T, = (N/2M)+LIM?—J(c+ L) M+c,,

whence : ' ¢o=T,—(N/2M)—-LIM*+J(c+ L) M. (A 18)
By substituting into (A 16) and simplifying we can finally write '

T(x,t) = Tl~%7(—$—%)—§ (M2 —x2) —J(c+L) (x—M). (A 19)

This is the required expression that is used in §2 (c).

APPENDIX B. THE EVALUATION OF THE VIEW FACTORS, V(x) AND V()

From figure 17a, we require the ratio of the area of the fraction of the upper aperture visible
through the lower aperture to the area of the lower aperture viewed from dx (¥ (x) if the element
dx is situated on the cylindrical wall or V,(x) if it is on the cone). First, for V(x), we can write

V(x) = ($;+5,)/ (nRY). (B 1)

Making use of the standard relation for the area of a segment of a circle, we can write for
an element dx on the cylindrical wall

S, = Ry arceos (1,/Ry) — ¥,(Ry — Y, (B2)
[(Ry (%~ ¥) (x+D) R ¢ J
5, = { s aoeoos | R gy [ B[], )
where w Y,=H, D/(x+ D) (B 4)

and, to calculate V,_(x) for the elements on the cone,
Y,=H,D/(x+D),
where H,, is distance of the element dx from the axis given by
H,=H —(L—x) tanky,

12 Vol. 316. A
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in which L is the length of the cylinder and y the angle of the cone. Y is the solution of

X24+Y2=RE,
2 (B5)
X24 (Y= ¥,)? = RY 2/ (x + D)?
in the plane X-Y of figure 17a.
When Y = ¥, we have
(= Y,) =T} = Ry 2/ (x+ D)*—Rj, (B 6)
. _ —Ryx* R} ¥,
from which Yl_2YZ(x+D)2+2Y2+2' (B7)

Figure (B 1) shows V(x) evaluated for the large and small pairs of apertures for the ranges of
x for which V(x) = 0.

10 T -
® L
AU
5 0.5
§ i cylinder (1)

B cylinder (s) 7]
) |
20 30 40 50 60
x/cm

Ficure B 1. The view factors from elements on the cylinder V(x) and cone V,(x) for the large (1) and small (s)
pairs of apertures; x is the distance of the element from the aperture.

ArpeENDIX C. THE EvaLUuATION OF dE(T),) AND dE(T,,)

In this Appendix we derive expressions for the fractions of the radiant flux leaving elements
on the cylinder and cone of the radiator that pass through the lower aperture. The results are
used in equation (25). The effective radius of the lower aperture is R, derived in Appendix A.

The fraction of radiant flux leaving a disc of radius R, that is intercepted by a parallel coaxial
disc of radius H a distance x from R, is given by

Fy_y=HY/(x*+H?). (C1)

This is an approximate form of (81), which is sufficient for x > H and x > R,,.
Differentiating (C 1) with respect to x gives the fraction intercepted by the cylindrical

element dx (see figure C 1), 9l

dfy_py =
but from angle-factor algebra we know that for a pair of surfaces a, b of areas 4 and B,
dF, , 4 = dF_, B, so that we can write
—nR2 xREH

Ay =5 g7 qs Yo-n = Pt HE (C3)
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“ [ 5 \{ \”

—
b N—

~
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Ficure C 1. Geometry used for calculating expressions for dE(T,) and dE(T,,).

From figure C 1 we can write down an expression for the radiant power from the cylindrical
element dx that passes through R,:

dE(T,) dx = 2nHdxe(x) E(T,) dFy,_,, (C4)

where E(T),) is the total radiant exitance of the element dx at a temperature T, €(x) is the
emittance of the element and H is the radius of the cylindrical part of the radiator (equal to
6 cm), so that

_ 2me(x) HERYE(T,) xdx
dE(T,)dx = g H (C5)
This is the required expression.
Coming now to an element dx on the cone, from figure C 1 we can write down
R (x—Q)%tan®}y
Frn T x2+A x4+ (x— Q)2 tan?ly’ (€6)
where @ = 36.5 cm and y = 30°, which is equal, with an error of less than 19, to
(x—Q)? tan®ly
Foop=—"""7—"2 (C7)
= (1—2Qx 1+ @Q%2) tan?}y, (C8)
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so that dF,_, = 2Q(x"2—Qx7?) tan®}y dx. (C9)

TR cosy

But At = s

dF;_,. (C10)
From figure C 1 we can write down an expression for the radiant power d£(7,,) from the
element dx on the conical surface that passes through R,:

_ 2mhdxey(x)
~ cosly

dE(T,,) dx E(T,,)dF, ,, (C 11)

where E(T,

cx
is the emittance of the element. Substituting for dF,_; we arrive at

) is the total radiant exitance of the element dx at a temperature 7, and €,(x)

dE(T,,) dx = 2nRS e, (x) Q tan®}y (x2 — Qx™) E(T,,) dx, (C 12)

which is the required expression.
As a check on the approximations made in deriving (C 7), we note that for €(x) = ¢,(x) and

T, = T,, = a constant,
©  onH2R2xd 60
f —’(%a—-—[;f)zx ~ J 2R Q tan by (7= Q) . (C 13)
=60 xr=

These two integrals should be identical because under these conditions they each represent the
radiant power passing through R, from a diffusely radiating disc of radius H at a distance x
from R,. Since they in fact differ by only a small percentage, we consider that the
approximations were adequate.

APPENDIX D. THE EVALUATION OF THE ANGLE FACTORS AND REFLECTANCES
FOR SCATTERING WITHIN THE RADIATION TRAP

In this Appendix we evaluate the angle factors and reflectances of (84)—(89), which allow
the scattering from the radiation trap to be calculated. We denote here the lower aperture by
A1, the upper by A2, the side walls by S, the upper walls by U and the lower walls by L and
adopt the convention that the fraction of the radiant flux passing from A1 to U, say, is written
F, ,_y- Using standard angle-factor algebra and the geometry of figure 29, we can write down.

F, ,_y. This is the fraction of the radiation leaving A1 that is intercepted by U and is given
by

Fy v =2R/{R*+ R: + D*+ [(R*+ R} + D?)*— 4R*R} ]3}, (D1)

which we write as Fy, v =2R/M, (D 2)

where R is the radius of the radiation trap.
F, s It follows that
Fors=1-Fy v (D3)

hence Fy,g=1—2R*/M. (D 4)
F;_p. This is given by
Fy 1, = 2R*/{2R*+ D?+[(2R*+ D?)2—4R*]3}, (D 5)
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which we write as Fy_1, = 2R*/N. (D 6)
Fy_g. It follows that

Fyg=1—Fy,, (D7)

hence Fyg=1—2R?/N. (D 8)

F§ A, From angle-factor algebra we know that

(area of A2)

Fsae = reaors) fazs (D9)
but Foo,g=1-F,, (D 10)
and Fy, 1 =2R*/{R*+ R} + D*+[(R*+ R% + D?)*— 4R*R} 1}
= 2R?/P. (D 11)
R} 2R?
Thus Fy pp= 2—RU§ (1 ——P—). (D 12)
F,_4,- As before, we can write
_ (area of A2)
FL~A2 - (area of L) FA2»L) (D 13)
R} 2R?
so that Fias= 7‘; 5 = 2Ry/P. (D 14)
F 1. In this case we can simply write
_ (area of L)
Fsr= (area of §) "1 (D 15)
R2
=W(I_FL7U>> (D 16)
R 2R?
but FL—U = FU—L> so that FS—L = -2—1—) (1 —T> (D 17)

F, ;- This represents the fraction of the radiation from A 1 that strikes the edges of the baffles
ranged up the sides of the radiation trap. If the average thickness of these edges is 3D and
there are n of them

Fy1g = Fysn3D/D (D 18)
— (1—2R*/M)n8D/D. (D 19)

Fy._, - This represents the fraction of the radiation diffusely scattered from the edges of the
baffles that reaches A2, for which

Fs po=1F5 as (D 20)

R? 2R?
()
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Fj 1_a o This represents the fraction of the radiant flux from A 1 striking the unpainted annular
ring of width (< Ry;) surrounding A2,

2Ryt
Fyraw = ——D‘i . (D 22)

Fy o1, All of the radiant flux reaching the unpainted ring 4, is reflected down towards the
flat surface L’ surrounding the lower aperture so that

Fypp = 1. (D 23)

F, 5, This represents the fraction of the radiant flux coming from A2’ that is diffusely
reflected from L’ back to A2. It is given by

Fiyae = 2RG/(RG + RY, + D*+ [(Ry + R, + D*)° — 4R} Ry, 14, (D 24)

where Ry, is the radius of the illuminated area of L’, given approximately by 2R;; — Ry..

It is now necessary to evaluate the reflectance factors.

The baffles were designed so that no surface directly irradiated by A1 was visible from A 2.
A minimum of two reflections from the 3M black paint is therefore required before a ray can
pass from A1 to A2. Here we denote the diffuse reflectance of the black paint by p, = 0.057.
The only exceptions are the scattering from the sharp edges of the baffles and the reflection
from the unpainted annular ring surrounding A 2. The three conditions of illumination for the
lower, middle and upper baffles on the side walls S are shown in figure D 1. For the middle
baffles, the incident flux is intercepted by the lower surface of the baffle marked A and is diffusely
reflected downwards. From simple geometry about half of this reflected flux strikes the baffle
just below in the region B visible from A2. Of this about one half is reflected back to A and
the other half is equally divided between an outward reflection and further reflections at the
base of the V groove. Thus

p(A1,S,A2) = bp2 (D 25)

for the middle baffles on the side walls.

In a similar way the reflectance can be estimated for the upper and lower baffles on the side
walls. Since either the area illuminated by Al or the area viewed from A2 is smaller than for
the symmetrical middle baffles, we find rather lower values of reflectance, about 35p2. We shall,
however, adopt a conservative estimate for the average reflectance and take

p(A1,S,A2) = 4p? (D 26)

as representing the average reflectance of the baffles on the side walls S.

The remaining half from the first reflection at A is roughly equally divided between the
outward reflection down towards L and inwards towards the base of the groove, where it
undergoes further reflections so that we can deduce

p(ALS, L) = jps. (D 27)

The reflectance of the sharp edges is treated differently. Each baffle during manufacture was
first painted and baked to give a hard, relatively thick, layer of paint covering the sharp copper
edge. The hardened paint was then filed to as sharp an edge as possible, as previously described.
The final radius of curvature of the edge was estimated to be about 40 um, leading to an effective
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A, surfaces directly illuminated by A,

middle baffle

B, surfaces visible from A,

\\\\\\\\“‘ /
N\
AN

AN ; lower baffle
- ‘“\/ /
7
baked 3M black

copper

radius of curvature & 40 pum
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Ficure D 1. Cross sections of examples of baffles on the side walls of the radiation trap. The baffles on the

upper and lower walls are similar in cross section to the middle baffles shown here.
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scattering width of about 60 pm. Since there were 19 baffles along the vertical height of S,
ndD/D = 0.01 and the reflectance

p(A1, S, A2) = 0.01p,.

The reflectance of the upper surface, U, of the radiation trap in the direction of the lower
surface, L, is found by taking first the reflectance of the V groove and then modifying it with
respect to the presence of baffles. The diffuse reflectance of a V groove is given by (Psarouthakis
1963)

_ ps sin
= (l—sinif)’ (D 28)
which, for an included angle of 54°, leads to
py = 0.45p,/(1—0.55p). (D 29)

The reflectance of the groove with baffles is less than this, since we need to consider only the
radiant flux that passes out through the opening between the baffles, which is about half that
coming from the V groove. We thus find

p<A1a U’ L) = %Pv (D 30)

The reflectance of L for radiant flux coming from S, p(S, L, A2), will be lower than the
reflectance of L for radiant flux coming from U, since most of the surfaces illuminated directly
by S are invisible from A2, and it can be taken to be equal to p(A1,S, A2), which we have
already calculated (equation (D 26)). The reflectance of S for radiant flux coming from U and
reflected in the direction of A2, p(U, S, A2), contributes very little to the final result and may
be taken to be }p. Similarly, the reflectance of U in the direction of S for radiant flux coming
from A1 contributes very little and can be taken, by symmetry, to be equal to 1py,.

Note added in proof (2 August 1985). The 1985 Least Squares Adjustment of the Fundamental
Constants has not yet been finally approved by Codata. The values given here should, therefore,
be checked against the eventual publication by Taylor & Cohen. It is not expected that the
final values or their uncertainties will differ significantly from those given here.
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FiGure 21. Representative views of the edges of the four apertures obtained by a scanning electron microscope.
In some views the silica spheres of the 3M black paint are visible.



